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Abstract: Trees are long living organisms, rarely used in molecular experiments because of large size of the
genome and long time of reproduction cycle. Sequencing data from Populus trichocarpa genome allowed for the
development of research on the processes associated with tree biology such as secondary wood formation,
long-term perennial growth, seasonal changes, biotic interactions, evolution etc. Reference data enable the
investigation of non-model trees such as Quercus or Fagus, having ecological and economic significance. Dur-
ing projects scientists use genomic, transcriptomic, proteomic and metabolomic approaches which contrib-
ute to better understanding of the physiological processes regulating tree biology. Data collected from these
multiple studies need to be integrated. The integration of data is the subject of the newly established field of
science called systems biology. This review presents progress in tree research after finishing the sequencing
project of Populus. It concentrates on modern trends in ‘omics’ and systems biology study of temperate
broadleave trees during the last 10 years of studies.

Abbreviations: DE — dimensional electrophoresis, CE — capillary electrophoresis, DIGE - differential 2DE,
EST - expressed sequence tag, FT - ICR — MS — Fourier transform ion cyclotron resonance mass spectrometry,
GC - gaschromatography, LC - liquid chromatography, MALDI-TOF - matrix-assisted laser desorption/ion-
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weight, NCBI EGP - National Center for Biotechnology Information Entrez Genome Project, NMR - nuclear
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Introduction

Trees are an important group of plants with envi-
ronmental and economic significance. Because of the
long life cycle and big size of the genome trees are not
often used in basic research carried out on molecular
level. They were used as a model plant by not so many
experimental groups but this situation has been
changing after sequencing of genome of the first tree

species Populus trichocarpa in 2006 (Tuskan et al. 2006;
see Fig. 1). Completion of this project has contrib-
uted to better understanding of the structure of the
genome and to the development of a new field of re-
search. On the basis of this ‘genomic era’ the ‘omic’
sciences came into being. Nowadays in the ‘post
genomic era’ scientists in tree research commonly use
‘omic’ approaches. Proteomics develops faster than
other sciences like trancriptomics or metabolomics.
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Fig. 1. Number of ‘omic’ publications published before and after Populus trichocarpa genome sequencing concerning tree sci-

ence

Bioinformatics enables collection and compilation of
huge volumes of data coming from these investiga-
tions. Altogether, ‘omic’ sciences offer a possibility of
describing processes not at one but at many different
levels, building an overall model of organisms func-
tionality. Such understanding is the basis of a new
field of study, the systems biology, which in a holistic
way combines data from different areas of research.

Herein we present the progress in tree research af-
ter completion of the sequencing project of a model
tree Populus. The review concentrates on modern
trends in genomics, transcriptomics, proteomics and
metabolomics of temperate broadleave trees during
the last decade of studies. Table 1 presents research
papers reviewed in this work.

The genome of forest trees:
what do we know?

Arabidopsis thaliana was the first known plant ge-
nome, published in 2000 (Arabidopsis Genome Initia-
tive). Six years later, the first tree species genome of
poplar (Populus trichocarpa) was published. Sequencing
is a tool for the genome structure recognition being the
basis for the next generation investigation of the role
and function of genes. In tree research, Populus has
been chosen because of the rapid growth rate, rela-
tively small size of the genome (~485 Mb) and ecolog-
ical and economic importance. Such a model allows
the scientists to study many processes associated with

tree biology e.g. dormancy, secondary wood formation,
long-term perennial growth, seasonal changes, flower-
ing, reproduction, biotic interactions, evolution of
adaptive traits and speciation. Populus can be geneti-
cally transformed. Interspecific Populus hybrids are
phenotypically diverse. The change in phenotype and
the data from the sequencing project help in gene map-
ping and establishment of their functions. The data can
also be used in practice, in breeding economically im-
portant hybrids. Because of the fast growth rate, some
hybrids could be bred on a large scale, as a source of re-
newable energy (Bradshaw et al. 2000, Pena and
Séguin 2001, Taylor 2002, Tuskan et al. 2003, Tuskan
et al. 2006, Jansson and Douglas 2007).

At present, apart from Populus no other forest spe-
cies of trees or shrubs can be found in the completed
large-scale sequencing projects. Similarly, no forest
species can be found in the large-scale sequencing
projects currently in progress. The trees for which
only genetic maps have been established are Corylus
avelana, Quercus robur and Salix viminalis (National
Center for Biotechnology Information Entrez Ge-
nome Project, NCBI EGP).

The database of the expressed sequence tags
(ESTs) contains much more information concerning
genomes of forest tree species. Properties like: lower
cost, shorter time to generate EST data (versus tradi-
tional sequencing) and the fact that the resulting data
may be useful in future research encourage the re-
searchers to use this technique (Ohlrogge and Ben-
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ning 2000). The ESTs database (http://www.ncbi.
nlm.nih.gov/dbEST) is a powerful tool for collecting
coding content and expression patterns for different
tissues, environments and species (Sterky et al.
2004). The first use of ESTs data was to identify the
genes involved in plant metabolic pathways. As at De-
cember 1, 2011 71,276,166 sequences were stored in
dbEST. Databases cover information about ESTs of
the following tree species: Populus, Picea, Pinus,
Quercus, Salix, Fagus, Taxus, Betula, Pseudotsuga and
Alnus (Ueno et. al. 2010, Rigaultetal. 2011). ESTs are
used in different kinds of research e. g. in trans-
criptome and metabolome profiling.

In recent times, genomics relies on the combina-
tion of traditional genetic methods and the tools used
in the ‘omic’ studies. For example, Derory et al.
(2006) combined Quantitative Trait Loci (QTL) with
Expressing Sequence Tag (EST), Quantitative Real
Time PCR (qRT-PCR) and Suppression Subtractive
Hybridization (SSH) in studies on genes differentially
expressed between the quiescent and active stage of
oak bud development. This research confirmed the
usefulness of combination of such methods in the
identification of relevant candidate genes. Gailinga et
al. (2009) used single nucleotide polymorphisms
(SNPs) with functional genomics protocol to assess
adaptive genetic variation in oak.

Transcriptomics

The transcriptomic approach is based on the analy-
sis of gene expression in certain locations (e. g. in
leaves, roots, groups of cells) and in time. The trans-
criptomes of organisms change dynamically depend-
ing on the environmental conditions (e. g. biotic and
abiotic stresses, Brosché et al. 2006), stage of life cy-
cle, or seasonal shifts. Research focuses mostly on
model organisms, such as Arabidopsis thaliana, or as
for trees, on Populus trichocarpa. In tree research, dif-
ferent topics concerning the Populus genus have been
studied. The transcriptomic approach was used e. g.
in research on wood-formation (Sterky et al. in 1998),
root growth and water-stress (Kohler et al. 2003),
seasonal changes in leaves (Sjodin et. al. 2006,
Hoffman et al. 2010), salt sensitivity (Escalante-Pérez
et al. 2009, Janz et al. 2010, Qiu et al. 2011), water
deficit (Plemion et al. 2006, Berta et al. 2009), and re-
sponse to ozone exposure (Street et al. 2011). Sjodin
et. al. (2006) created a database named UPSC-BASE
containing transcriptomic data from P. trichocarpa.

The next generation of new sequencing methods
will provide a possibility to develop research on
non-model trees species. The analysis of results col-
lected from the ‘omic’ research is limited by insuffi-
cient number of references in the databases.

Nowadays, transcriptomic analysis is based mainly
on microarrays and qRT-PCR, which allow to study

the expression of known genes. Microarrays are used
in measuring the level of large numbers of genes si-
multaneously. qRT-PCR is used for gene expression
comparisons on a small scale. The EST library is used
on a larger scale in studies carried out on gene expres-
sion profiling (Sterky et al. 2004). A high cost of those
protocols has led to development of other methods
like Massive Parallel Signature Sequencing (MPSS)
which enables analysis of the gene expression in a
sample by counting the number of individual mRNA
molecules produced by each gene (Brenner et al.
2000). Using next generation sequencing technique
(NGS; Stapley et al. 2010) makes it possible to produce
even a million of sequences in one run. The Roche 454
FLX Titanium system, Illumina’s Genome Analyser
(Solexa), ABI’'s SOLID platforms, HeliScope, Ion Tor-
rent, PacBio and Stright are used nowadays in
transcriptome studies (Glenn 2011). The high costs of
all the listed protocols have driven researchers to look
for new protocols less expensive, laborous and time
consuming. For example, Transcriptome Finger-
printing Analysis (TFA) allows detection of gene ex-
pression patterns in studies of picoeukaryotic marine
microbial communities. The TFA has emerged as a
tool for indication of changes in the samples and their
pre-selection before using more powerful, time-inten-
sive and costly methods (Coll-Lladé et al. 2011). The
Roche 454 FLX Titanium system was used in the re-
search of non-model organisms Melitaea cinxia and
Nymphalidae (Vera et al. 2008). The Short-Read Se-
quences (SRS) protocol was used for the investigation
of Pachycladon enysii (Collins et al. 2008). The Collins
group (2008) has mapped Pachycladon orthologues to
specific A. thaliana loci, in order to find putative dupli-
cate of Pachycladon genes. The use of SRS to compare
the sequences of species without a close reference is
difficult but possible. Improvement of the algorithms
is required (Surget-Groba et al. 2010). The study of
trees, also non-modelspecies, can be based on the next
generation methods or on newly generated techniques
which will be discovered in the future.

Proteomics

The proteomic approach is the fastest developing
one from all the “omic” sciences. Proteomics comple-
ments analysis of the transcriptome and the meta-
bolome. It is an essential source of information about
biological systems because it generates knowledge
about the concentrations, interactions, functions, and
catalytic activities of proteins, which are the major
structural and functional determinants of cells
(Baginsky 2009).

The proteomics of trees is a fast developing area of
research, yet we are far from expectation of full un-
derstanding of the role of proteins in tree biology. Un-
til 2011, the proteomic approach was used for re-
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search on tree species such as Populus, Pinus, Eucalyp-
tus, Picea, Fagus, Quercus, Acer, Hevea and Cunninghamia.
The results of those studies were widely discussed by
Abril et al. (2011). In this review, only the data which
are not mentioned in Abril’s review will be presented.
Miernyk and Hajduch (2011) have reviewed the pub-
lications concerning proteomics of seeds, including
the seeds of trees. However, they have concentrated
mostly on the storage proteins.

The tree scientists’ attention is focused on study-
ing the proteome profiles of pollen (Erler et al. 2011,
Schenk et al. 2011), leaves, roots or seeds (Pawlowski
and Kalinowski 2003; Szczotka et al. 2003,
Pawlowski 2007, 2009, 2010). Pawlowski (2007,
2009) identified functional proteins associated with
the Norway maple (Acer platanoides) and beech (Fagus
sylvatica) seeds dormancy breaking. Most of the pro-
teins were under control of abscisic and gibberellic ac-
ids, hormones regulating dormancy status (Pawlow-
ski 2010). Furthermore, the proteomic techniques
are used to investigate processes associated with
ozone exposure (Kerner et al. 2011), xylem tissues
forming (Song et al. 2010) or stress influence (Du-
rand et al. 2011).

The majority of research was done using electro-
phoresis: one dimensional (1DE), two dimensional
(2DE) (reviewed by Jorrin-Novo et al. 2009) or differ-
ential 2DE (DIGE) (Tonge et al. 2001). More and
more attention of researchers is focused on quantita-
tive MS technologies (Oeljeklaus et al. 2009). Differ-
ent techniques of MS can be used as powerful tools
for research carried on plant material. Tandem mass
spectrometry (MS/MS) is used e.g. in phospopro-
teome analysis (Palumbo et al. 2011).

Proteomic tools have been divided into classical
(based on gel) and second generation (gel and label
free) magnifying capabilities of protein coverage.
Multidimensional chromatography protein identifica-
tion (MudPIT) makes use of isotope labeling which
allows for investigation of post-translational modifi-
cations, high-throughput protein identification and
investigation of quantitative differences in protein ex-
pression (Canas et al. 2007).

Metabolomics

The metabolome is understood as a complete set of
small molecules (i.e. metabolites) which participate
in, or are products of, metabolic reactions within an
organism or tissue. The metabolomic profile reflects
changes in the plant (usually in certain places such as
the root, leaf, flower, seed etc.) which might bee. g. in
different stages of the life cycle or stress conditions.
The advantage of metabolomics is that it can be ap-
plied to non-model plants without a need for the ge-
nome information, however genome sequences are
sometimes used to predict the occurrence of metabo-

lites. The design of such studies generally includes
plant cultivation, sampling, extraction, derivatiza-
tion, separation and quantification, data matrix con-
version, data mining, and bioscience feedback which
can involve a lot of experimental errors (Fukusaki and
Kobayashi 2005).

Metabolomic data are collected in numerous stud-
ies together with transcriptomic and proteomic data
to show a more global pattern of changes. Because of
the lack of standard methods used in this type of re-
search, nowadays metabolomics is rarely used alone
(Ward et al. 2007, Wienkoop et al. 2008). Robinson
et al. (2005) have examined the potential of metabo-
lite profiling as a selection tool for genotype discrimi-
nation in Populus.

Different techniques are used to study the meta-
bolomic profiles of plants. The scientists use chroma-
tography (gas chromatography GC for the analysis of
small molecules MW < 1000, or alternatively, high
performance liquid chromatography HPLC for the
analysis of large or labile molecules), mass spectrom-
etry (coupled with gas chromatography GC-MS or
capillary electrophoresis CE-MS for the analysis of
hydrophilic small molecules, Fourier transform ion
cyclotron resonance FT-ICR-MS for all purposes, nu-
clear magnetic resonance NMR spectroscopy (used as
an alternative to chromatography/mass spectrometry
due to its main advantage of having a non-destructive
effect on the sample) and vibrational spectroscopic
technique (Dunn et al. 2005, Fukusaki and Kobayashi
2005, Robinson 2009, Janz et al. 2010, Ward et al.
2010). Regardless of the chosen technique of meta-
bolomic study, eventually all paths lead to identifying
(and quantifying) the key metabolites. Given the
chemical diversity of metabolomes, metabolite iden-
tification is intrinsically difficult (Wishart 2011). Re-
cently a lot of attention is given to NMR spectroscopy
(Kim et al. 2011). 1D NMR is used in the classifica-
tion of similar groups of samples while 2D NMR is
used to characterize unidentified compounds from
the 1D protocol. LC-NMR allows for chemical charac-
terization of samples and its advanced version,
LC-SPE-NMR (liquid chromatography — solid phase
extraction — nuclear magnetic resonance), offers the
possibility of examination of alcoholic extracts and
identification of flavanolglycosides and cardenolides
(Ward et al. 2007).

Systems biology

The results of studies are like pieces of a jigsaw puz-
zle, which together create a picture of the global under-
standing of what happens in the living organisms. To
understand biology at the systems level, we must ex-
amine the structure and dynamics of the cellular and
organism functions, rather than the characteristics of
isolated parts of a cell or an organism (Kitano 2002).
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This is the fundamental concept of the systems biol-
ogy. Such understanding requires amalgamation of
data from all kinds of studies, not only proteomic or
metabolomic but also ecological, physiological etc.
Sjodin (2007) claims that understanding of the com-
plexity of biological processes is possible only in the
case of integration of knowledge from different fields
of biological science. Kitano (2002) divides the sys-
tems biology research into four key directional catego-
ries: structure, dynamics, design and control methods
needed to avoid erros. The integration has to occur on
each level starting from the basic genome data through
transcriptome, proteome and metabolome to the phe-
notype. Such understanding of all processes taking
place in different organs and plants can give the scien-
tists answers to the fundamental questions concerning
the functioning of organisms.

In the field of tree research, most of the integrative
data (coming from a limited number of studies) con-
cern Populus species. Broad-range metabolomic and
transcriptomic studies carried by Sjodin (2007) on de-
velopment and autumn senescence of Populus leaves
suggest that processes are much more complex than
we thought. Hoffman et al. (2010) have chosed the as-
pen hybrid (P. tremula x P. tremuloides) to study the im-
pact of seasonal photoperiod, environmental signal
that affects many physiological changes in plants e.g.
timing of the winter dormancy. They have integrated
transcriptomic and metabolomic data and pointed out
that 16% of the genes were diurnally regulated. Several
of these genes were involved in circadian-associated
processes, including photosynthesis and primary and
secondary metabolism. Metabolites were mostly in-
volved in carbon metabolism. Direct linking of the
transcript changes with the changes in metabolite pro-
files was very difficult. Changes in the metabolome
may occur later than the corresponding transcriptomal
changes. Further investigation is required to elucidate
the mechanisms involved in plants’ adaptation to new
photoperiods at transcript and metabolite levels more
comprehensively. Differences in transcriptome and
metabolome in P. euphratica (salt tolerant) and P. x
canescens (salt sensitive) were the focus of Janz et al.
(2010) studies. The evolutionary adaptation of P.
euphratica to saline environments was apparently
linked with higher energy requirement of cellular me-
tabolism and a loss of transcriptional regulation.

Discussion

Twelve years ago the first plant genome of Arabi-
dopsis thaliana was released. Many researchers ex-
pected that completion of sequencing projects would
give answers to many questions which they had asked
before sequencing started. However, the projects de-
liver a lot of data which do not offer easy answers but
rather give rise to new questions and hypotheses

about genome functionality. The sequencing program
has already proven to be a milestone in molecular bi-
ology. It has opened a new post-genomic era, that is
linked with the emergence of a new research field in
biology. Nowadays ‘omics’ sciences are strictly re-
lated to the genome of organisms. Genomics, trans-
criptomics, proteomics and metabolomics are the
main directions of research. Currently, all the ‘omic’
sciences develop rapidly and dynamically. Following
the commencement of sequencing programs for for-
est species (the first one being Populus trichocarpa),
‘omic’ sciences have also conquered this area. Re-
searchers discuss about the structure of ‘omic’ sci-
ences. Plemion et al. (2006) treat proteomics as an ac-
tive field of genomics, while Remmerie et al. (2001)
claim that functional proteomics and proteogenomics
stem from from functional genomics and have nowa-
days become an equal player in the systems biology.
Abril et al. (2011) have stated that proteomic is a fun-
damental discipline in the post-genomic era. At pres-
ent, ‘omic’ sciences branch out into specialized sub-
jects e.g. proteomics into modificomics (phospho-
proteomics, Kersten et al. 2006, Peck 2006 or
glycoproteomics, Hashii et al. 2005, Remmerie et. al
2011), while interactomics (protein-protein interac-
tions) is treated like a separate discipline, not part of
proteomics (Lo 2007, Ivanov et al. 2011). Fluxomics
is a branch of metabolomics (Kim et al. 2011).

A search through databases could return more and
more information about new ‘omics’ sciences like
glycomics (study aimed at comprehensive elucidation
and characterization of all the glycoforms like mo-
nosaccharides, oligosaccharides, polysaccharides, and
their modifications, Gupta et al. 2009). The progress
in post-genomic area leads to formation of new
‘omics’ sciences almost each day.

Nowadays we can take advantage of more and
more advanced databases and web tools, which help
not only in the planning of experiments but also in
the understanding of their results. NCBI created a
wide range of databases including PubMed - biblio-
graphic databases and PuBMed Central, GenBank -
nucleotide sequence databases, (dbEST, dbSTS, or
dbGSS), Molecular Structure Databases, Taxonomy
databases and Single Nucleotide Polymorphism Data-
base (dbSNP) of Nucleotide Sequence Variation etc
(McEntyre and Ostell 2002). The Internet offers ac-
cess to different databases e.g. PROTICdb in pro-
teomics (Ferry-Dumazet et al. 2005), or UPSC- BASE
in transcriptomics (Sjodin et al. 2006). The databases
of NMR metabolomic analyses still contain a limited
number of records (Kim et al. 2011). In 2001, a data-
base called Babelomics was set up. Babelomics is an
integrative platform for the analysis of transcripto-
mic, proteomic and genomic data with advanced func-
tional profiling (http://babelomics.bioinfo.cipf.es,
reviewed by Al-Shahrour et al. 2005, 2007). Babe-
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lomics helps the scientific community offering an ad-
vanced set of methods for the integrated analysis of
genomic data (Medina et al. 2010).

Conclusions and future
perspectives

Sequencing of Arabidopsis and subsequently Po-
pulus led to the development of a new generation of
techniques useful for the investigation of other
non-model but economically and ecologically impor-
tant tree species. The understanding of processes as-
sociated with tree biology can be more effective, be-
cause of parallel development of a new area of re-
search delivering data for genomic resources. New
branches of research are developing as modificomics,
interactomics etc. Structured data from e.g. crystal-
lography and other area of research (such as physics)
can be integrated with data from biological research
to give a more comprehensive picture of processes
taking place in organisms. On the other hand, the
growing resources of information goffering research-
ers more possibilities to search for, compare and pub-
lish the results of their work, give rise to a need for
special engines and interpretation software. Such
tools should allow for compilation of data from differ-
ent ‘omic’ studies and facilitate the building of a uni-
versal model of organism functionality. Collaboration
of the scientific community seems to be the founda-
tion for the development of the systems biology.
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