Adelson Rocha Dantas, Leonardo Pequeno Reis, Marcelino Carneiro Guedes, Ana Cláudia Lira-Guedes, Ana Lícia Patriota Feliciano, Luiz Carlos Marangon Population dynamics of Pentaclethra macroloba, a hyperdominant tree in the Amazon River estuary

Supplementary Material

varianics		Ajuruxi	uxi			Maracá	acá			Mazag	Mazagão Velho	
Soil	T1	T2	Т3	T4	T1	T2	Т3	T4	T1	T2	Т3	T4
hH	$\beta = 3.95*$	$\beta = 0.36$	$\beta = 1.33$	$\beta = 0.39$	$\beta = -1.44$	$\beta = 1.60$	$\beta = -1.76$	$\beta = 0.018$	$\beta = 2.43$	$\beta = -0.01$	$\beta = -0.49$	$\beta = -2.64^{**}$
ОМ	$\beta = 0.02$	$\beta = 0.004$	$\beta = 0.10$	$\beta = 0.03$	$\beta = 0.01$	$\beta = -0.01$	$\beta = 0.01$	$\beta = -0.003$	$\beta = -0.001$	1 $\beta = -0.06$	$\beta = 0.02$	$\beta = 0.04$
Ь	$\beta = -0.02$	$\beta = 0.03$	$\beta = -0.01$	$\beta = 0.07$	$\beta = 0.06$	$\beta = -0.04$	$\beta = 0.03$	$\beta = -0.13$	$\beta = -0.02$	$\beta = -0.07$	$\beta = -0.08$	$\beta = 0.02$
X	$\beta = -9.72$	$\beta = 4.64$	$\beta = 2.25$	$\beta = -12.13$	$\beta = -11.55$	$\beta = 8.18$	$\beta = 5.21$	$\beta = 0.27$	$\beta = 5.35$	$\beta = -3.62$	$\beta = 8.55$	$\beta = 12.2^{**}$
Ca + Mg	$\beta = 0.32$	$\beta = -0.08$	$\beta = 0.13$	$\beta = -0.05$	$\beta = -0.06$	$\beta = 0.26$	$\beta = -0.12$	$\beta = 0.42$	$\beta = -0.22$	$\beta = 0.04$	$\beta = 0.22$	$\beta = 0.48^*$
Ca	$\beta = 0.32$	$\beta = 0.08$	$\beta = 0.21$	$\beta = -0.15$	$\beta = -0.12$	$\beta = 0.35$	$\beta = -0.35$	$\beta = 0.36$	$\beta = -0.14$	$\beta = -0.12$	$\beta = 0.17$	$\beta = 0.85^*$
Mg	$\beta = 0.55$	$\beta = -0.27$	$\beta = 0.09$	$\beta = 0.08$	$\beta = 0.11$	$\beta = 0.25$	$\beta = 0.02$	$\beta = 0.23$	$\beta = -0.49$	$\beta = 0.35$	$\beta = 0.27$	$\beta = 0.79$
Al	$\beta = -3.74$	$\beta = -2.08$	$\beta = -0.86$	$\beta = -0.78$	$\beta = -0.12$	$\beta = -5.21$	$\beta = 1.14$	$\beta = -1.20$	$\beta = -0.11$	$\beta = 0.07$	$\beta = 0.48$	$\beta = 0.83^*$
H + Al	$\beta = -0.93$	$\beta = -0.27$	$\beta = -0.03$	$\beta = -0.56$	$\beta = 0.42$	$\beta = -0.24$	$\beta = 0.33$	$\beta = 0.03$	$\beta = -0.36$	$\beta = -0.12$	$\beta = 0.26$	$\beta = 0.36**$
SB	$\beta = 0.31$	$\beta = -0.07$	$\beta = 0.13$	$\beta = -0.08$	$\beta = -0.06$	$\beta = 0.26$	$\beta = -0.12$	$\beta = 0.43$	$\beta = -0.21$	$\beta = 0.07$	$\beta = 0.23$	$\beta=0.47^*$
CTC	$\beta = 0.13$	$\beta = -0.14$	$\beta = 0.09$	$\beta = -0.47$	$\beta = 0.03$	$\beta = 0.21$	$\beta = -0.07$	$\beta = 0.25$	$\beta = -0.34$	$\beta = -0.08$	$\beta = 0.28^{**}$	$\beta = 0.24^{***}$
BS	$\beta=0.19^*$	$\beta = 0.05$	$\beta = 0.03$	$\beta = 0.06$	$\beta = -0.09$	$\beta = 0.07$	$\beta = -0.06$	$\beta = 0.02$	$\beta = 0.02$	$\beta = 0.019$	$\beta = -0.02$	$\beta = -0.03$
Al Sat.	$\beta = -0.61$	$\beta = -0.35$	$\beta = -0.13$	$\beta = -0.08$	$\beta = -0.004$	$\beta = -0.62$	$\beta = 0.11$	$\beta = -0.39$	$\beta = -0.02$	$\beta = 0.007$	$\beta = 0.04$	$\beta = 0.01$
Clay	$\beta = -0.0005$	$\beta = -0.009$	$\beta = 0.003$	$\beta = -0.02$	$\beta = 0.0007$	$\beta = 0.008$	$\beta = -0.009$	$\beta = 0.01$	$\beta = 0.01$	$\beta = -0.001$	$\beta = 0.006*$	$\beta = 0.009**$
CS	$\beta = -0.005$	$\beta = -0.0008$	$-0.0008 \beta = -0.009$	$\beta = -0.0004$	$\beta = -0.003$	$\beta = -0.003$	$\beta = 0.007$	$\beta = 0.005$	$\beta = 0.003$	$\beta = 0.01$	$\beta = 0.0001$	$\beta = 0.01^{**}$
FS	$\beta = -0.006$	$\beta = 0.01$	$\beta = 0.007$	$\beta = -0.01$	$\beta = 0.04^{**}$	$\beta = -0.005$	$\beta = -0.004$	$\beta = 0.03$	$\beta = -0.008$	8 $\beta = 0.02$	$\beta = -0.01$	$\beta = -0.06*$
TS	$\beta = -0.003$	$\beta = 0.001$	$\beta = -0.003$	$\beta = -0.003$	$\beta = -0.01$	$\beta = -0.002$	$\beta = 0.004$	$\beta = 0.009$	$\beta = 0.002$	$\beta = 0.009$	$\beta = -0.005$	$\beta = 0.01^*$
Silt	$\beta = 0.008$	$\beta = 0.002$	$\beta = -0.001$	$\beta = 0.01$	$\beta = 0.0002$	$\beta = -0.0009$	$\beta = -0.001$	$\beta = -0.008$	$\beta = -0.004$	4 $\beta = -0.001$	$\beta = -0.008$	$\beta = -0.007$
Porosity	$\beta = 0.02$	$\beta = 0.02$	$\beta = -0.01$	$\beta = -0.06$	$\beta = 0.005$	$\beta = 0.02$	$\beta = 0.02$	$\beta = -0.009$	$\beta = 0.007$	$\beta = -0.02$	$\beta = 0.002$	$\beta = 0.05$
Humidity	$\beta = -0.004$	$\beta = 0.02$	$\beta = -0.11$	$\beta = -0.12^*$	$\beta = 0.009$	$\beta = -0.01$	$\beta = 0.01$	$\beta = 0.008$	$\beta = 0.001$	$\beta = -0.03$	$\beta = 0.004$	$\beta = 0.01$
Vegetation												
Richness	$\beta = -0.11$	$\beta = 0.14^*$	$\beta = 0.05$	$\beta = -0.04$	$\beta = -0.10$	$\beta = -0.22$	$\beta = 0.09$	$\beta = 0.0005$				
Diversity	$\beta = -0.36$	$\beta = 0.75$	$\beta = 0.38$	$\beta = -0.71$	$\beta = 0.30$	$\beta = -1.11$	$\beta = 0.52$	$\beta = -0.04$				
I uminosity	A = -0.07	B = 0.01	8 = -0.08	B = 0.003	B = 0.001	B = 0.04	B = -0.01	$\beta = -0.04$				

Significance: *0.05, **0.01, ***0.001; β = GLM regression coefficient.

BS – Sum of bases; pH – Hydrogeonic Potential; FS – Fine sand; CEC – Cation Exchange Capacity; OM – Organic Matter; CS – Coarse Sand; PD – Particle Density; K+ – Potassium; Ca2+ – Calcium; Al3+ – Aluminum, TS – Total.