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Abstract: In the present study, we identified the members of the small auxin-up RNA (SAUR) gene family
in Prunus sibirica and analyzed their localization, phylogeny, duplication, cis-elements in the promoter, and
expression patterns. In total, 57 PsSAURs were identified, which were randomly distributed along eight
chromosomes. Among them, eight and ten pairs of segmentally duplicated genes and tandem duplication
genes were found in 13 and 21 PsSAURs, respectively. Phylogenetic analysis indicated that the PsSAURs
were divided into five groups (Group A-E). Light-responsive, methyl jasmonate, abscisic acid, salicylic
acid, and gibberellin, as well as low-temperature responsiveness, and defense and stress responsiveness
were identified by analyzing PsSAURs promoter sequences. The collinearity analysis of P. sibirica SAURs and
Prunus mume and Prunus persica SAURs family genes detected 35 and 59 pairs of gene pairs, respectively, and
the Ks values of all collinearity gene pairs were almost less than 1. Expression pattern analysis showed that
PsSAURs had different tissue and stage expression patterns. However, research on SAURs in non-model
plants remains limited, and studies on the expression and function of SAURs are lacking. This study pro-
vides a foundation for further investigations into the functional analyses of SAURs in P. sibirica.
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Introduction

Auxin plays an important role in plant growth, de-
velopment, and stress response. Early auxin-induced
genes are divided into three major categories: Aux-
in/indole-3-acetic acid (Aux/IAA), Gretchen Hagen
3 (GH3), and small auxin upregulated RNA (SAUR)
(Hagen & Guilfoyle, 2002). SAUR was first identified
in the hypocotyl elongation zone of soybean (Glycine
max L.) (McClure & Guilfoyle, 1987). Subsequently,

SAURs were identified in Arabidopsis (Hagen & Guil-
foyle, 2002), corn (Zea mays L.) (Chen et al., 2014),
wheat (Triticum aestivum L.) (Liu et al., 2022), apple
(Malus pumila Mill.) (Wang, Lu et al., 2020), grape
(Vitis vinifera L.) (Li et al., 2018), and citrus (Citrus
reticulata Blanco) (Wang, Lu et al., 2020). SAURs are
major response genes in the auxin pathway that can
respond to the auxin family of genes within 2-5 min-
utes (Wang, Yu, et al., 2020). Currently, functional
studies on SAUR in plant growth and development


https://doi.org/10.12657/denbio.091.004
mailto:hyh20012008%40imau.edu.cn?subject=

Identification and analysis of the SAURs in Prunus sibirica 43

have been reported. For example, AtSAUR63 pro-
motes the elongation of cells in Arabidopsis (Franco
et al.,, 1990), AtSAUR19-24 plays a major regula-
tory role in hypocotyl elongation and increases the
leaf size in Arabidopsis (Spartz et al., 2012), and At-
SAUR36 is a positive regulator that mediates aux-
in-induced leaf senescence (Hou et al., 2013). The
SAURs not only participate in the regulation of plant
growth and development but also play an important
role in the response to environmental stress. For ex-
ample, AtSAUR41 plays an important role in abiotic
stress resistance, which could increase the resistance
to salt stress in transgenic plants (Qiu et al., 2020).

Prunus sibirica is an ecological and economic tree
species in Asia, which is broadly distributed in north-
ern China, eastern Mongolia, eastern Siberia and the
coastal areas of Russia (Niu et al., 2015). Prunus sibir-
ica kernel is rich in nutrition, fat and protein, and
it is widely used in industry, food, cosmetics, med-
icine and other aspects. It can be fried and salted,
and can also be used to prepare a variety of food and
beverages (Wang et al., 2014). In addition, P. sibirica
is drought- and cold-resistant and can adapt to var-
ious harsh environmental conditions. It is a pioneer
tree species for afforestation in arid and semi-arid
mountainous areas (Wang et al., 2019). Therefore, P
sibirica has a very broad development and utilization
potential.

Previous studies on P. sibirica mainly focused on
the physiological characteristics of kernels; howev-
er, research on the SAUR gene family is lacking thus
far (Wang et al., 2022). The completion of genome
sequencing for P. sibirica provides valuable data for
systematic analysis of the PsSAUR family (Huang
et al.,, 2023). This study aims to use bioinformatics
to identify PsSAUR family members and conduct a
systematic analysis at the whole-genome level. The
results of the study will provide a reference for stud-
ying the function of PsSAUR and provide technical
support for the subsequent improvement of P. sibirica
varieties and germplasm resources.

Materials and methods

Identification of PsSAURs: To identify SAURs in
the P. sibirica genome, 78 SAURs in Arabidopsis (Phy-
tozome 12 database) were used as reference sequenc-
es to search against the P. sibirica genome (https://
www.rosaceae.org, tfGDR1049) by using BLAST
(2 minimum amino acid identity of > 50, E-value
< le-5). The SAURs structural domain sequence
PF02519 was downloaded from the Pfam database
(http://pfam.xfam.org/), and the Hidden Markov
Model was used to screen candidate sequences con-
taining the SAURs structural domain. In addition,
Conserved Domain Search (https://www.ncbi.nlm.

nih.gov/Structure/cdd/wrpsb.cgi) and the SMART
website (http://smart.embl-heidelberg.de/) were
used to confirm the presence of conserved structur-
al domains. ExPASy ProtParam (https://web.expasy.
org/protparam/) was used to predict the physical
and chemical parameters (Gasteiger et al., 2005), in-
cluding the number of aa, Mw, PlIs, grand average of
hydropathicity, aliphatic index, and instability index.
CELLO (http://cello.life.nctu.edu.tw/) was used to
predict the subcellular location of the SAUR.

PsSAUR phylogenetic tree construction: A
phylogenetic tree was established using the identi-
fied full-length protein sequences of SAURs from P.
sibirica and Arabidopsis thaliana. The sequence align-
ment of 135 SAURs was established using Clustal X
(Larkin et al., 2007). The phylogenetic tree was con-
structed in MEGA X (Kumar et al., 2018) based on
the maximum likelihood method, the JTT+F model,
and bootstrap values were calculated for 1000 repli-
cates. Evolview was used to display the phylogenetic
tree (Subramanian et al., 2019).

Structure, conserved motifs, and gene dupli-
cation analysis of PsSAURs: GSDS 2.0 (http://
gsds.cbi.pku.edu.cn/index.php) (Hu et al., 2015)
was used to analyze the exon and intron composition
of PsSAURs. MEME (http://meme-suite.org/tools/
meme) (Bailey & Elkan, 1994) was used to predict
the conserved domains of PsSAURs with five different
sequence motifs and a sequence motif width of 6-50
aa. Tbtools (Chen et al., 2020) was used to perform
collinearity and gene duplication analysis of PsSSAURs.

Gene duplication and evolutionary analysis of
PsSAURs: The chromosomal location of PsSAURs
was obtained from P. sibirica genome annotation files.
BLASTP was used to search collinearity for each Ps-
SAUR (e-value < le, the top 5 matches). Then, the
replication events were examined using MCScanX in
TBtools (Chen et al., 2020).

Analysis of cis-acting elements in PsSAUR
promoters: To analyze the cis-acting elements in pro-
moter sequences, the sequences 2,000 bp upstream
of the coding regions of the identified PsSAURs were
extracted. PlantCARE (http://bioinformatics.psb.
ugent.be/webtools/plantcare/html/) (Lescot et al.,
2002) database was used for predicting the cis-acting
elements in the promoters, and the results were vis-
ualized using TBtools (Chen et al., 2020).

Analysis of synteny and Ka/Ks ratios: The
chromosome location of PsSAUR genes were ob-
tained by referring to the genome annotation file and
visualized in Chromosome-Basic Circos by TBtools
(Chen et al., 2020). To evaluate the synteny and gene
duplication events of SAUR genes in P. sibirica and its
related species (Prunus mume and Prunus persica), the
genome and genome annotation files of two species
were downloaded from the GDR database (https://
www.rosaceae.org/). Synteny analysis was performed
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using One Step MCScanX in TBtools, and the results
were visualized using Circos and Dual Synteny Plot
(Chen et al., 2020). The coding sequences (CDSs)
and protein sequences of the gene pairs were com-
pared, with Ka/Ks values = 1, >1 and <1 represent-
ing neutral, positive and negative selection, respec-
tively, and non-synonymous substitution rates (Ka),
synonymous substitution rates (Ks) and Ka/Ks ratios
were calculated in TBtools (Chen et al., 2020).
Expression Analysis of PsSAURs: RNA-seq
data, including pistil, stamen, petal, sepal, and the
kernels (S1-S6) at six development stages of P. sibiri-
ca. At least two biological replicates for each sample
were selected. FPKM (fragments per kilobase of exon
per million fragments mapped) of each gene was cal-
culated to present the expression level of PsSAURs.
The expression patterns were based on the trans-
formed data of log2 values and min-max normaliza-
tion by Heat map in TBtools (Chen et al., 2020).

Results

Whole-genome identification and characteris-
tics of PsSAURSs: A total of 57 PsSAURs were iden-
tified in the P. sibirica genome, which were randomly
distributed on eight chromosomes (Fig. 1, Table S1).
Among them, the highest number (24) of PsSAURs
was on chromosome 8, with several genes forming
clusters, and the other seven chromosomes each
containing 1-10 PsSAURs. PsSAURs were named Ps-
SAUR1-PsSAUR57 according to their position on the
chromosome. The length PsSAURs were ranged from
70 to 236 amino acids (aa), the molecular weight
(Mw) and putative isoelectric points (PI) ranging
from 8.05 (PsSAUR53) to 27.03 (PsSAUR17) kDa and
5.11 (PsSAUR33) to 10.46 (PsSAUR19), respectively
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Fig. 1. Chromosome distribution of PsSAURs in P. sibirica
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(Table 1). A total of forty-nine and 8 PsSAURs were
hydrophilic and hydrophobic proteins. Protein insta-
bility index analysis showed that 17 PsSAURs were
stable with an instability index of less than 40. In ad-
dition, the protein subcellular localization prediction
showed that PsSAURs were primarily located in the
cytoplasm, nucleus, and mitochondria.

Phylogenetics of PsSAURs: To study the phy-
logenetic relationships among PsSAURs, 78 AtSAUR
protein sequences and 57 PsSAUR protein sequences
were used to construct a phylogenetic tree (Fig. 2).
The PsSAURs were divided into five groups (Groups
A-E). Among them, Group E had the largest num-
ber of PsSAURs, which contained 24 PsSAUR mem-
bers, followed by Group A, which contained 14 Ps-
SAUR members. Groups B, C, and D consisted of
9, 7, and 3 PsSAUR members, respectively. Most of
PsSAURs with similar locations were distributed in
the same group as follows: PsSAUR24, PsSAUR25, Ps-
SAUR26, PsSAUR27, PsSAUR28, and PsSAUR29 from
Group A were located on chromosome 7; PsSAURSG,
PsSAUR7, PsSAURS8, PsSAURY, and PsSAURI11 from
Group B were located on chromosome 2; PsSAUR34,
PsSAUR35, PsSAUR36, PsSAUR37, PsSAUR38, Ps-
SAUR39, PsSAUR40, PsSAUR41, PsSAUR42, Ps-
SAUR43, PsSAUR44, PsSAUR45, PsSAURA46,
PsSAUR47, PsSAUR48, PsSAUR51, PsSAUR52, Ps-
SAURS53, PsSAUR54, PsSAUR55, and PsSAUR56 from
Group E were located on chromosome 8.

Gene structure and conserved motifs in Ps-
SAURs: The exon-intron structure of PsSAURs and
their conserved motifs were analyzed to under-
stand their sequence characteristics (Fig. 3). In to-
tal, 73.68% (42/57) of PsSAURs contained no in-
trons, ten PsSAURs contained one intron, only four,
including PsSAURI3, PsSAURI5, PsSAUR17, and
PsSAUR23, contained two introns, and ,PsSAUR49
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contained three introns. MEME was used to analyze
the conserved motifs of 57 PsSAUR proteins. A total
of five conserved motifs were obtained (Fig. 3), in-
cluding motifl, motif2, motif3, motif4, and motif5,
at lengths of 32, 21, 11, 15, and 21 aa, respectively.
Sixteen PsSAURs contained motifl, motif2, motif3,
and motif4; 14 contained motifl, motif2, motif3,
and motif5; 19 contained motifl, motif2, and motif3.
However, two PsSAURs (PsSAUR36, PsSAUR37) con-
tained motifl, motif2 and motif4; two (PsSAUR2S,
PsSAUR29) contained motifl, motif3, and motif5;
PsSAUR33 contained motif2, motif3, and motif5.
Generally, some PsSAURs in the same group had sim-
ilar conserved structures. For example, PsSAURs in
Group D contained motifl, motif2, motif3, and mo-
tif5, and most PsSSAURs in Group E contained motifl,
motif2, motif3, and motif4.

Gene duplication in PsSAURs: The gene dupli-
cation of PsSAURs was analyzed, and even segmental
duplications and 10 tandem duplications of PsSAURs

GOUNVSLY

PsSAUR31
ATSAUR49
PsSAUR50

Table 2. Gene duplication of PsSAUR in P. sibirica

Type Chromosome Gene ID
Segmental duplication Chrl&Chr7  PsSAUR3/PsSAUR32
Chr1&Chr8  PsSAUR3/PsSAUR46
Chr1&Chr8  PsSAUR4/PsSAUR50
Chr2&Chr6 ~ PsSAUR6/PsSAUR20
Chr2&Chr2 ~ PsSAUR9/PsSAURI1
Chr2&Chr6 ~ PsSAUR10/PsSAUR23
Chr3&Chr7  PsSAUR14/PsSAUR33
Tandem duplication Chrl PsSAURG6/PsSAUR7
Chr3 PsSAUR12/PsSAUR13
Chr4 PsSAUR16/PsSAUR17
Chré PsSAUR20/PsSAUR21/
PsSAUR22

Chr7 PsSAUR27/PsSAUR28
Chr8 PsSAUR39/PsSAUR42
Chr8 PsSAUR40/PsSAUR41
Chr8 PsSAUR45/PsSAUR46
Chr8 PsSAUR47/PsSAUR48
Chr8 PsSAUR55/PsSAUR56
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Fig. 2. Phylogenetic tree of SAUR proteins from P. sibirica (Ps) and Arabidopsis (At) and Arabidopsis. AtSAUR protein and
PsSAUR protein were represented by red and green circles, respectively. Group A-E are represented by light blue, red,

green, blue and yellow, respectively
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were obtained (Table 2). These included 21 PsSAURs
on chromosomes 1, 3, 4, 6, 7, and 8. Taken togeth-
er with the phylogenetic relationship of PsSAURs,
the result showed that most of the gene pairs for
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segmental duplication (6/7) and tandem duplication
(9/10) were located in the same group, including the
segmental duplication PsSAUR3/PsSAUR46 and the
tandem duplication PsSSAUR12/PsSAURI3.
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Fig. 3. Architecture of conserved motifs and gene structure of PsSAUR. Different numbers 1-5 in the five conserved motifs
of PsSAUR proteins are represented by other colour boxes. In the structure of the PsSAUR gene, the yellow box repre-
sents the coding region, and the green box represents the untranslated region
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Fig. 4. Distribution of major cis-elements on the 2000 bp region of promoter of PsSAURs
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Promoter analysis of PsSAURs: The cis-acting
elements of promoter regions (from the start codon
located 2000 bp upstream) were analyzed (Fig. 4, Ta-
ble S2). The results revealed that the promoters of
the 15 PsSAURs contained the auxin signalling trans-
duction related cis-elements, including PsSAURSG,
PsSAURI5, PsSAUR21, PsSAUR30, PsSAUR35, Ps-
SAUR36, PsSAUR36, PsSAUR37, PsSAUR37, Ps-
SAUR38, PsSAUR39, PsSAUR44, PsSAUR45, Ps-
SAUR48, and PsSAUR49. cis-responsive elements
were also involved in defense and stress response,
low-temperature response, drought induction, hor-
monal response, and others, and primarily included

a

Chr1 Chr2 Chr3

160 methyl jasmonate (MeJA), 15 auxin, 139 abscisic
acid (ABA), 38 salicylic acid, and 39 gibberellin (GA)
responsive elements. In addition, PsSSAUR promoters
also contained 24 low-temperature responsiveness
elements, 26 defense and stress responsiveness ele-
ments, and 12 endosperm expression cis-responsive
elements.

Collinearity analysis in PsSAURs: The synteny
relationship between SAURs family genes in P. mume
and the closely related P. mume and P. persica were
analyzed. We detected 35 and 59 gene pairs (Fig. 5a,
Table S3). The average Ks values between P. sibirica
and the closely related P. mume and P. persica were

Prunus mume

Prunus sibirica

P. sibirica - P. mume
b 0.35
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P. sibirica - P. persica
0.35

0.30

0.25 1

0.20

Ka

0.154
0.104

0.05 1

3
0.00 T T T
0

Fig. 5. Synteny analysis of PsSSAUR genes between P. sibirica and two other plant species (P. mume and P. persica). (a) Grey
lines in the background and blue lines between different species indicate the collinear blocks and syntenic SAUR pairs
between P. sibirica and other species, respectively. (b) The scatter plot shows the Ka and Ks distributions of gene pairs

between P. sibirica and the other plant species
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0.57 and 0.74, respectively (Fig. 5b). These results
suggest that the PsSAUR gene family is more closely
related to P. persica than to P. mume. The Ks values of
all collinear gene pairs are almost less than 1, con-
firming that the SAURs gene family has undergone
strong negative selection (Table S4).

Expression patterns of PsSAURs in different
floral organs: The expression patterns of PsSAURs
in the pistil, stamen, petal, and sepal were analyzed
(Fig. 6, Table S5). A total of 34 PsSAURs had an aver-
age expression level of fragments per kilobase million
FPKM > 1, which were used in subsequent analyses.
PsSAUR4, PsSAURS, PsSAUR19, and PsSAUR22 were
highly expressed in the pistil; PsSSAUR13 was high-
ly expressed in the stamen; PsSAUR30, PsSAUR32,
PsSAUR33, PsSAUR38, PsSAUR41, PsSAUR42, Ps-
SAUR43, PsSAUR44, PsSAUR45, PsSAUR46, Ps-
SAURA48, PsSAURS51, and PsSAUR52 were highly ex-
pressed in the petal; PSSAUR9 and PsSAURII were
highly expressed in the sepal.

Expression patterns of PsSAURs in kernels
at different developmental stages: To analyze the
function of PsSAURs in kernel development, the ex-
pression patterns of PsSAURs in the kernel during six
different developmental stages (S1-S6) were analyz-
ed (Fig. 6, Table S6). The results showed that the
average expression level of 17 PsSAURs revealed an
FPKM > 1, and the expression patterns of PsSAURs
in the kernel differed during different developmental
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Fig. 6. Expression profile of PsSAURs in different floral or-
gans
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Fig. 7. Expression profile of PsSAURs in kernels at different
developmental stages

stages. For example, PsSAUR49 was downregulated
during development. PsSAUR9 and PsSAURII, Ps-
SAURS5 and PsSAUR14, and PsSAUR42 and PsSAUR43
were highly expressed at S1, S2, and S3 respectively,
which were the rapid growth stages, whereas the ex-
pression of PsSSAURS8 was higher at S5 and S6, which
were the mature stage.

Discussion

Plant auxin is a hormone produced by cell regions
with division and increased activity to regulate plant
growth rate and direction. The primary role is to re-
lax the plant cell wall so that cell growth and elon-
gation can also increase RNA and protein synthesis
in many plants (Zhao et al., 2018). SAURs are a sig-
nificant class of early auxin-induced genes in plants,
which can quickly respond to auxin induction and
promote cell elongation (Stortenbeker et al., 2019).
Along with the increasing number of plant genomes
sequenced whole-genome identification and analysis
of the SAUR family have been completed in many
plants. However, the analysis of the SAURs in P. sibir-
ica needed to be clarified; thus, we identified and ana-
lyzed the PsSAURSs in the current study.

In this study, 57 PsSAURs were identified and
characterized by bioinformatics methods, distributed
on 8 chromosomes of the P. sibirica genome. Com-
pared with the reported SAUR family members of
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sweet cherry (86) (Qian-dong et al., 2023) and pear
(116) (Wang et al., 2022) in Rosaceae, the number of
SAURs in P, sibirica was less, which indicates that the
SAUR family is conservative in the evolutionary pro-
cess. Moreover, compared with the number of SAURs
in apple (70), the number of SAURs in P. sibirica was
less. This may be because of only one whole-genome
duplication event in P. sibirica, whereas the apple ge-
nome has experienced two whole-genome duplica-
tion events (Velasco et al., 2010).

Understanding the structure of genes is essential
for elucidating their function. Studies have shown
that SAURs generally have no introns and are usu-
ally clustered (Zhu & Kong, 2014). Analysis of Ps-
SAURs showed that 85% of these have no introns,
which was associated with the previous reports, such
as cucumber (67/73) (Cucumis sativus L.) (Wang &
Shang, 2019), grape (59/64) (Li et al., 2018), to-
mato (90/99) (Lycopersicon esculentum Miller), potato
(131/134) (Solanum tuberosum L.) (Wu et al., 2012),
and apple (44/70) (Wang, Lu, et al., 2020). Chromo-
somal location analysis showed that PsSAURs were
distributed in clusters on chromosomes 1, 4, 6, 7
and 8, indicating that they experienced significant
fragment replication and tandem replication events
during species evolution (Chen et al., 2014; Zhang
et al., 2021; Wong et al., 2019). Phylogenetic and
conserved structure analysis of 57 PsSAURs showed
that the family was divided into five different groups.
Some differences in conserved domains between dif-
ferent groups in P. sibirica indicate that PsSAURs have
functional diversity during evolution.

Previous studies have identified tandem and seg-
mental duplications as the primary driving force of
plant evolution and gene family expansion, with seg-
mental duplications being the most common in angi-
osperms (Cannon et al., 2004). Colinearity analysis
showed that 35 and 59 gene pairs were found in P.
stbirica, P. mume and P. persica, respectively. The Ka and
Ks analysis of the replicated gene pairs showed that
most were negative selection. Our results are con-
sistent with the study of the pear (Wang et al., 2022)
SAUR gene.

The SAUR gene family is one of the early auxin
response gene families. Previous studies have shown
that the SAUR gene family plays a vital role in plant
growth and development. It can regulate hypocot-
yl elongation, cell expansion, auxin synthesis and
transport (Gendreau et al., 1997; Chae et al., 2012).
In the expression pattern analysis of PsSAURs in dif-
ferent floral organs, there were 4, 1, 13 and 2 highly
expressed genes in pistil, stamen, petal and sepal,
respectively, and two highly expressed genes in ker-
nels of different developmental stages of PsSAURs,
each of which was found in S1, S2 and S3 stages. It
is shown that the expression pattern of PsSAURs is
organ and developmental stage-specific. Our results

are consistent with the study of sweet cherry (Qian-
dong et al., 2023) and apple (Wang, Lu et al., 2020)
SAUR gene.

Conclusions

In this study, genomics and bioinformatics analy-
sis of 57 PsSAURs genes in P. sibirica were carried out.
Specifically, we studied their gene structure, evolu-
tionary relationships, collinearity, promoter cis-ele-
ments, and tissue-specific and growth-stage-specific
expression patterns. It provides a theoretical basis
and an important reference for further research on
the function of PsSAURs in Rosaceae.
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