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Abstract: Coniferous forest spatial structure plays a critical role in forest management and ecological sta-
bility. However, traditional field survey methods for assessing stand spatial structure are labor-intensive, 
costly, and disruptive to ecosystems. To address these limitations, this study employs a multi-source LiDAR 
data fusion approach to explore intelligent methods for extracting stand spatial structure parameters.Using 
Larix principis-rupprechtii Mayr and Picea wilsonii as representative species, this study focuses on LiDAR data 
fusion as a core methodology to investigate intelligent approaches for extracting the spatial structure of 
forest stands in Shaanxi, China. The stand spatial structure parameters of the sample plot(including uni-
form angle index, neighborhood comparison and crowding degree) and the frequency were calculated and 
counted. The results showed that (1) in the coniferous forest stand with a total of 291 individual trees, the 
individual tree segmentation accuracy based on the integrated UAV-LiDAR and BLS data reached F = 0.96. 
(2) the Larix forest exhibited random distribution (R = 0.48), moderate size differentiation (U = 0.50), 
and average density (W = 0.75). The Picea crassifolia forest also showed random distribution (R = 0.48), 
moderate size differentiation (U = 0.47), and relatively high density (W = 0.94). The coniferous forest 
exhibited an unreasonable combination of tree distribution, with a frequency of 12%.The fused LiDAR data 
for parameter extraction and the calculation of forest stand spatial structure parameters enables faster and 
more effective analysis of spatial structure characteristics compared to traditional methods. Moreover, the 
multivariate distribution of these spatial parameters reveals internal structural features of the forest stand, 
allowing for the accurate identification of unreasonable structural combinations and providing a theoret-
ical basis for optimizing and adjusting forest stand structure.Despite its promising results, this study is 
limited by the relatively small sample size and the specific forest types analyzed, which may constrain the 
generalizability of the findings.Future research should explore the integration of multi-temporal LiDAR 
datasets to assess dynamic changes in forest spatial structures and expand the methodology to diverse 
forest ecosystems.
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Introduction

The spatial structure of forests, defined as the spa-
tial arrangement of trees and their attributes within a 

forest community, significantly influences the stabil-
ity, development potential, and management scale of 
the forest (An, 2023). It plays a critical role in stand 
structure optimization (Dong & Liu, 2012; Zhang et 

https://doi.org/10.12657/denbio.093.003
mailto:hhk2018%40126.com?subject=


	 Stand spatial structure of Coniferous forests based on multi-source LiDAR data	 43

al., 2014) and sustainable forest management and 
development (Hu, 2010). Furthermore, multivariate 
analysis of forest stand spatial structure can enhance 
the understanding of its distribution patterns, there-
by providing a scientific basis for forest management 
and decision-making.Obtaining spatially explicit 
individual tree information is a prerequisite for as-
sessing and evaluating forest spatial structure. Con-
sequently, advancing smart forestry by rapidly and 
accurately acquiring individual tree data and achiev-
ing automated spatial structure parameter retrieval 
is essential (Chen, 2017; Fu, 2010; Liu et al., 2024). 
Previous studies have extensively explored quanti-
tative indicators such as the Uniform Angle Index 
(W), which measures the spatial distribution pattern 
of trees (e.g., random, clustered, or evenly spaced), 
Mingling Degree (M), which assesses the degree of 
species mixing, Crowding Degree (C), which reflects 
the overlap of tree crowns and competition for space, 
and Neighborhood Comparison (U), which evaluates 
size differentiation among neighboring trees.For in-
stance, Li et al. (2013) validated the independence of 
various structural parameters in characterizing tree 
attributes through an analysis of mixed broadleaf-Ko-
rean pine and natural pine-oak forests. Zhang et al. 
(2019) conducted an in-depth analysis of the multi-
variate distribution of spatial structure parameters in 
natural mixed forests of Quercus aliena var. acuteserrata, 
providing foundational data and reference for stand 
structure adjustment and optimization. Similarly, 
He et al. (2021) employed multivariate distribution 
methods to investigate the spatial structure charac-
teristics of secondary Betula platyphylla forests.How-
ever, these studies predominantly rely on field-meas-
ured data, such as tree positions, diameter at breast 
height (DBH), and tree height, which involve sub-
stantial labor and high costs (Hui et al., 2016). More-
over, such measurements can cause disturbances to 
forest ecosystems, thereby limiting the applicability 
of these methods across broader regions.

Passive optical remote sensing enables the rapid 
acquisition of large-scale imagery, providing surface 
information of the target area through the optical 
properties of the images. This technology allows for 
the efficient retrieval of key forest attributes such 
as canopy closure (Hu et al., 2017; Li et al., 2016) 
and stand volume (Yang et al., 2016). Visible light 
remote sensing through unmanned aerial vehicles 
(UAVs) provides benefits such as cost-effectiveness, 
high-resolution imagery, and operational flexibility, 
making it highly suitable for precision forest moni-
toring(Bai et al., 2021). However, visible light data 
lacks penetration through the forest canopy, limit-
ing its ability to capture information on vertical for-
est structure (Zeng, 2019). In comparison, LiDAR 
(Light Detection and Ranging) demonstrates greater 
potential for forest spatial structure analysis due to 

its canopy penetration capability (Xie et al., 2020) 
and high precision (Cao et al., 2019), making it a 
promising tool for acquiring stand spatial structure 
parameters (Chen, 2020). Despite its advantages, 
UAV-based LiDAR (UAV-LiDAR) operates with a 
top-down scanning approach, which limits its abili-
ty to accurately capture understory vegetation. Con-
versely, backpack-based LiDAR (BLS), which utilizes 
a bottom-up scanning method, faces challenges in 
dense and complex stands where canopy occlusion 
prevents the acquisition of upper-layer structure in-
formation.The integration of UAV-LiDAR and BLS 
data can mitigate these limitations, fully leveraging 
LiDAR’s capability for high-precision forest parame-
ter extraction. For instance, Zhang et al. (2020) im-
proved tree height estimation by merging UAV-de-
rived point clouds with terrestrial point clouds. 
Xu(2022) combined UAV and terrestrial laser scan-
ning (TLS) data to estimate forest aboveground bio-
mass, demonstrating the advantages of fused data in 
individual tree biomass estimation. Similarly, Shimi-
zu et al. (2022) and Xu (2018) integrated airborne 
and terrestrial LiDAR point clouds, significantly 
enhancing parameter extraction accuracy. Yu et al. 
(2024)fused ALS (Airborne Laser Scanning) and TLS 
data, constructing 3D tree models that markedly im-
proved the precision of branch attribute extraction 
and timber volume prediction.In summary, current 
LiDAR technologies for non-destructive acquisition 
of stand and individual tree parameters have matured 
significantly.By integrating multi-source LiDAR data, 
it becomes possible to leverage the complementary 
strengths of these systems: Airborne LiDAR excels 
in capturing large-scale canopy structures, while 
Backpack LiDAR provides detailed ground-level in-
formation. This fusion approach addresses key limi-
tations of single-source data, enhancing the accuracy 
and comprehensiveness of spatial structure analysis. 
However, research on analyzing forest stand spatial 
structure characteristics based on the multivariate 
distribution of fused LiDAR data and spatial struc-
ture parameters remains limited.

Although advances have been made using remote 
sensing technologies such as LiDAR and UAVs to 
study forest structures, there is a lack of comprehen-
sive studies focusing on the combination of UAV and 
Backpack LiDAR Scanning (BLS) for spatial structure 
analysis in coniferous forests, especially in the Qin-
ling area. Current studies often fail to capture the 
fine-scale spatial patterns or consider multi-source 
data fusion for more accurate analysis. Forest ecosys-
tems play a crucial role in global climate change, spe-
cies conservation, and ecological restoration, with 
research on forest stand structure being key to un-
derstanding forest ecological processes. Particularly 
in the Qinling Mountains, this ecological corridor is 
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vital for biodiversity conservation and climate regu-
lation in central China. 

Therefore, this study focuses on eight sample 
plots within the Huoditang Experimental Forest 
Farm in the Qinling Mountains, encompassing a to-
tal of 291 individual trees. UAV-LiDAR and backpack 
LiDAR point cloud data were collected and fused 
using multi-feature point matching and the Iterative 
Closest Point (ICP) algorithm. The fused point cloud 
was segmented using the relative shortest path al-
gorithm, enabling the automated extraction of indi-
vidual tree parameters.The purpose of this study is 
to develop and validate a multi-source LiDAR data 
fusion methodology for accurate and efficient ex-
traction of forest spatial structure parameters. By 
applying this methodology to sample plots in the 
Huoditang Experimental Forest Farm, this research 
aims to: 1) highlight the potential of LiDAR data 
fusion in overcoming traditional survey limitations; 
2) demonstrate its applicability in Coniferous forest 

ecosystems; and 3) provide insights into optimizing 
forest spatial structure for sustainable management 
and ecological stability.

Materials and methods
Study area

The study area is located within the Huoditang 
Experimental Forest Farm of Northwest A&F Uni-
versity (Fig.  1). The forest farm is located on the 
southern slope of the central Qinling Mountains in 
Ningshan County, Shaanxi Province, China, between 
33°18'–33°28'N latitude and 108°21'–108°39'E longi-
tude. The total area of the forest farm is approximate-
ly 22.25 km², with elevations ranging from 1,420 m 
to 2,474 m and slopes varying between 20° and 50°.
This region experiences a subtropical humid mon-
soon climate, with an average annual temperature 

Fig. 1. Cloud data of the study area and sample sites (a) Geographical location of the study area; (b) Airborne LiDAR point 
cloud data; (c) Backage-LiDAR point cloud data; (d) Fusion point cloud data
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of approximately 10.5  °C. The recorded extreme 
temperatures range from a minimum of −9.5 °C to 
a maximum of 35 °C, and the average frost-free pe-
riod is around 199 days. The area receives an aver-
age annual precipitation of approximately 1,000 mm, 
primarily concentrated between July and September, 
and the average annual humidity is about 77%. The 
growing season for vegetation lasts approximately 
177 days.

Data acquisition

UAV-LiDAR data
The data were collected in July 2023 using a DJI 

M300 RTK unmanned aerial vehicle (UAV) equipped 
with a high-precision LiDAR sensor (ZENMUSE 
L1). The L1 sensor operates at a laser wavelength of 
905 nm, with a maximum of three echoes, a laser 
divergence angle of (0.03° × 0.28°) mrad, and a rang-
ing accuracy of ± 3 cm. The UAV’s flight path was 
designed using DJI Pilot software. Due to the signifi-
cant topographic variation in the Qinling Mountains, 
a terrain-following flight mode was utilized to ensure 
consistent data acquisition over the complex terrain. 
The relative flight altitude was set to 100 meters, 
with a flight speed of 10 m/s, and both the forward 
and side overlap were set to 80%. These flight pa-
rameters ensured the collection of high-density and 
accurate LiDAR point clouds, which were crucial for 
the subsequent spatial structure analysis of the for-
est in the study area.

Backpack-LiDAR data
The BLS data and UAV-LiDAR data were collected 

simultaneously in July 2023 using the Feima Mobile 
LiDAR Scanning System SLAM100. This system is 
equipped with a 360° rotating gimbal, providing a 
270° × 360° laser field of view, and features 16 laser 

channels with a point frequency of 320 kpts/s. The 
minimum measurement range of the system is from 
0.5 to 120 meters, with a measurement error of ± 
2 cm. Each sample plot was scanned along a closed-
loop path to ensure the comprehensive capture of all 
tree information while minimizing data redundancy.

Field inventory data
The plot data were collected in July 2023 at the 

Huoditang Experimental Forest Farm of North-
west A&F University. The study plots were set at 
20 × 30 m in size, and each tree within the plots was 
individually measured, with the minimum diameter 
at breast height (DBH) for measurement set at 5 cm. 
The positions of individual trees and the four bound-
ary points of the plots were recorded using an RTK 
system (Zhonghaida - Haixingda vRTK2). The DBH 
was measured using a standard diameter tape, while 
the crown width (CW) was measured with a long 
tape to determine the east-west and north-south di-
rections of the tree crown’s vertical projection. Tree 
height was measured using a laser rangefinder.A to-
tal of 291 trees were surveyed across the eight plots. 
Based on visibility, understory vegetation, and cano-
py closure, the plots were classified into three simple 
plots (L3, L4, L5), two moderate plots (L1, L2), and 
three complex plots (Q1, Q2, Q3). Simple plots had 
lower canopy closure, with minimal tall shrubs in 
the understory and an open view. Complex plots had 
high canopy density, dense understory vegetation, 
and poor visibility. Moderate plots exhibited under-
story vegetation density and visibility conditions be-
tween the two extremes. Detailed information for 
the plots is provided in Table 1.

In the table, n refers to the number of trees meas-
ured in the plot. The data for tree height and diame-
ter at breast height (DBH) in the table are presented 
as mean ± standard deviation.

Table 1. Detailed information of the plots

Plot
number Tree species H

(m)
DBH
(cm)

Elevation
(m)

Crown 
density

Understory 
environment

Complexity 
degree

L1
(n = 47)

Larix principis-rupprechtii Mayr 20.6±3.0 22.0±5.9 1999 0.75 simple moderate

L2
(n = 37)

Larix principis-rupprechtii Mayr 21.5±1.6 22.6±4.5 1997 0.73 simple moderate

L3
(n = 23)

Larix principis-rupprechtii Mayr 20.2±4.2 23.7±5.0 2013 0.55 simple simple

L4
(n = 21)

Larix principis-rupprechtii Mayr 17.4±6.5 22.3±6.1 2013 0.43 simple simple

L5
(n = 27)

Larix principis-rupprechtii Mayr 18.2±7.0 22.8±5.0 2013 0.53 simple simple

Q1
(n = 58)

Picea wilsonii 23.5±2.5 25.6±5.2 2027 0.90 complex complex

Q2
(n = 51)

Picea wilsonii 21.7±4.1 27.0±8.8 2025 0.86 complex complex

Q3
(n = 27)

Picea wilsonii 17.6±4.3 28.5±7.6 2029 0.80 complex complex
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Research methodology

Species Composition and Spatial Structure Units
The main tree species in the study plots are Picea 

wilsonii and Larix principis-rupprechtii Mayr , with three 
plots dominated by Picea wilsonii and five plots dom-
inated by Larix principis-rupprechtii Mayr. Picea wilsonii 
is a coniferous tree species in the spruce genus of 
the pine family, characterized by a conical crown, tall 
stature, and deep green foliage. It is an ideal species 
for establishing water conservation forests, and is 
primarily found in the mountainous and plateau ar-
eas of northwestern China, including provinces such 
as Gansu, Qinghai, Ningxia, and Shaanxi. Larix prin-
cipis-rupprechtii Mayr, also known as Siberian larch, is 
an important ornamental tree species. Additionally, 
Larix principis-rupprechtii Mayr absorbs a significant 
amount of carbon dioxide during its growth, which 
contributes to mitigating global warming and plays 
a crucial ecological role. The Larix principis-rupprechtii 
Mayr plantation in the Huoditang Experimental For-
est Farm was established in the mid-1970s, and no 
harvesting or replanting has been conducted since its 
establishment.The size of the spatial structure unit 
is determined by the reference tree and its neighbor-
ing trees. According to Hui et al., the spatial struc-
ture unit consisting of the reference tree and its four 
closest neighboring trees (n = 4) is most suitable for 
describing the structural characteristics of a forest 
stand [1]. Therefore, in this study, a spatial structure 
unit is defined by one reference tree and four neigh-
boring trees, with the standard angle α0 set to 72°. To 
eliminate the edge effect, a 2-meter buffer zone was 
set around the perimeter of the plots. Trees within 
the buffer zone can only participate as neighboring 
trees in the analysis, while trees within the central 
area can serve as either reference trees or neighbor-
ing trees for the analysis.

UAV-LiDAR and backpack-LiDAR matching
After preprocessing the UAV-LiDAR and BLS 

point cloud data, the UAV-LiDAR data is used as a 
reference to perform rough registration of the BLS 
point cloud. Initially, the two point clouds from the 
same scene are roughly aligned through rotation or 
translation of the initial matrix values. Then, a mul-
ti-feature point matching method is applied to find 
corresponding feature points between the two point 
cloud datasets, achieving preliminary alignment. 
The multi-feature point matching method is based 
on feature points in the point cloud that exhibit sig-
nificant differences in shape, curvature, or other at-
tributes, which can be used to uniquely identify the 
local structure of the point cloud.Subsequently, the 
Iterative Closest Point (ICP) algorithm is employed 
for fine registration of the point clouds. The core 
idea of the ICP algorithm is to iteratively minimize 

the difference between the point clouds in order to 
achieve precise alignment. The main steps include: 
initialization, matching corresponding points, calcu-
lating the optimal transformation, performing rigid 
body transformation, and checking for convergence.

Single tree segmentation, parameter extraction, 
and accuracy verification

The study used the density-based spatial cluster-
ing algorithm with noise (DBSCAN) for tree trunk 
segmentation (robustness to noise points and high 
efficiency. The comparative shortest-path (CSP) al-
gorithm was applied for point cloud normalization 
(Sun et al., 2013), DBH estimation, and crown 
segmentation.

For the comparison between detected trees and 
field-measured trees, a 1:1 matching approach was 
adopted. The accuracy of the segmentation was ver-
ified using metrics such as correct segmentation 
count Nt, missed segmentation count No, over-seg-
mentation count Nc, detection rate r,precision p,and 
F1 score. In the buffer zone, if there is only one ex-
tracted tree crown apex, this extracted value is con-
sidered a true positive (TP). If there are multiple ex-
tracted vertices, the one closest to the field-measured 
location is selected as the true positive (TP), and the 
others are regarded as false positives (FP). If no ex-
tracted vertex is present within the buffer zone, the 
tree is considered a false negative (FN).The accuracy 
of tree diameter at breast height (DBH), tree height, 
and crown width extraction was evaluated using the 
coefficient of determination , root mean square error 
(RMSE), and mean absolute error (MAE) methods.
The corresponding formula is:

	 	 (1)

	 	 (2)

	 	 (3)

	 	 (4)

	 	 (5)

	 	 (6)

where Nt refers to the number of trees detected 
within the sample plot, No represents the number 
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of trees missed by the algorithm, and Nc denotes the 
number of trees detected in the plot that do not ac-
tually exist, xi represents the ground truth value, x̂i 
denotes the predicted value, and x is the mean of the 
measured values.

Indicators for evaluating the spatial structure of 
forest stands

The spatial structure of forest stands was analyz-
ed by calculating the Zero-element, univariate, bivar-
iate, and trivariate distributions of parameters such 
as W, U, and C extracted from the fused point cloud 
data. A comparative analysis was conducted between 
the N-order distribution of structural parameters de-
rived from the original data and those extracted from 
the fused data, followed by validation of the structur-
al parameters using field-measured data.

The zero-element distribution mainly describes 
the mean value characteristics of the spatial struc-
ture parameters of the stand. According to this dis-
tribution, the overall average status of forest spatial 
structure can be observed. The average W (W) in the 
range of [0.475,0.517] belongs to random distribu-
tion, < 0.475 is uniform distribution, > 0.517 be-
longs to cluster-like distribution. The average U (U) 
reflects the dominant degree of tree species in the 
stand, with the medium grade as the watershed, the 
smaller the value, the more disadvantaged the tree, 
and the vice versa. The average C (C) is the medium 
level as the watershed. The higher C, the denser and 
more continuous the forest canopy, and the greater 
the competitive pressure among trees.

The univariate distribution of forest stand spatial 
structure parameters is represented by the frequen-
cy distribution corresponding to five levels (0, 0.25, 
0.50, 0.75, and 1), The corresponding formula is 

	 pi = P(X = xi)	 (7)

In the formula, ≥0 and the sum of all frequencies 
equals 1.

The bivariate distribution pairs spatial structure 
parameters based on different frequency levels (Wan 
et al., 2019), resulting in 25 combinations, each 
representing distinct structural characteristics. The 
distribution of their occurrence frequencies is then 
analyzed.

The trivariate distribution refers to combining the 
five levels of any two structural features with the five 
levels of another structural feature, and performing 
a cross-analysis to obtain the frequency distribution 
of 125 unique structural combinations (Wu et al., 
2019).

The spatial structure parameters involved in this 
study (Table  2) were calculated using ArcGIS 10.2 
software, plotted with Origin 2018 , and the frequen-
cy distribution was statistically analyzed using Office 
Excel 2018.

Results and analysis
Point cloud fusion results

After the coarse registration, the BLS point 
cloud and the UAV LiDAR point cloud are gener-
ally aligned, bridging the gap in the canopy struc-
ture missing in the reference point cloud. However, 
there are misalignments on the ground, which affect 

Table 2. Calculation formula of spatial structure parameters.

Spatial structure parameters Formula Explaination
Uniform angle index When the j-th angle α is less than 72°, Zij = 1; otherwise Zij = 0

Neighborhood comparison If the j-th attribute of the neighboring tree is smaller than that of the reference tree i, 
then Kij = 1; otherwise Kij = 0

Crowding degree When the crown projection of the reference tree i overlaps with that of the neighbor-
ing tree j, yij=1; otherwise yij = 0.

Fig. 2. Registration result of BLS point cloud and UAV 
point cloud. The yellow point cloud represents the 
BLS-LiDAR and the blue point cloud represents the 
UAV-LiDAR
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subsequent tree height and diameter at breast height 
(DBH) measurements (Fig. 2a). The point cloud is 
then fine-tuned using the Iterative Closest Point 
(ICP) algorithm, resulting in the accurately regis-
tered point cloud (Fig. 2b). Compared to the coarse 
registration in Figure 2a, the ground point cloud’s 
stratification phenomenon within the same plot has 
been eliminated, and the fusion of the canopy point 
cloud has improved. The Digital Elevation Model 
(DEM) of the fused point cloud was obtained using 
the Inverse Distance Weighted (IDW) interpolation 
method [28]. The UAV LiDAR point cloud (DEMUAV) 
and the fused point cloud (DEMZ) were compared 
by calculating the difference (DEMc). The minimum 
value of DEMc is 0.007 m, and the maximum value 
is 0.053 m, indicating that the vertical precision is at 
the centimeter level and the vertical alignment of the 
point clouds is highly accurate.

Single tree detection and parameter 
extraction results

A total of 291 individual trees were measured 
across eight sample plots, with 289 trees successfully 
detected and matched on a one-to-one basis. The ac-
curacy of individual tree position recognition reached 
92.9%, and the overall F-measure was 96.0%. Two 

trees were missed (0.69% of the total trees), and 22 
trees were over-detected, with only one being a Lar-
ix principis-rupprechtii Mayr, while most over-detected 
trees were found in the Picea wilsonii plots with higher 
density and more understory shrubbery. This led to 
the misdetection of shrubs taller than 1.3 meters as 
trees. The segmentation accuracy of the fused point 
cloud decreased as the number of trees, understory 
canopy, and plot complexity increased. The main rea-
son for this was that in the complex plots (Q1, Q2, 
Q3), the understory environment was complicated 
with taller shrubs that intertwined with tree trunks, 
resulting in missegmentation. In contrast, simpler 
and moderate plots had fewer shrubs, leading to 
better ground segmentation. The detailed results for 
individual tree detection in each plot are shown in 
Table 3.

Based on the fused point cloud data, the R² for di-
ameter at breast height (DBH) extraction in the sim-
ple plot (Fig. 3a) was 0.98, with RMSE of 0.81 cm 
and MAE of 0.62 cm. In the moderate plot (Fig. 3b), 
the R² was 0.95, with an RMSE of 1.22 cm and an 
MAE of 0.70 cm. In the complex plot (Fig. 3c), the 
R² was 0.92, with an RMSE of 2.01 cm and an MAE 
of 1.22 cm.

Based on the fused point cloud data, the tree 
height extraction results in the simple plot (Fig. 4a) 
showed an R² of 0.99, RMSE of 0.55 m, and MAE of 

Table 3. Single tree extraction accuracy results of fusion point cloud

Plot 
number Tree species Number of measured 

individual trees
Number of extracted 

individual trees FP FN TP r(%) p(%) F(%)

L1 Larix principis-rupprechtii Mayr 47 42 0 0 47 100.0 100.0 100.0
L2 Larix principis-rupprechtii Mayr 37 37 0 0 37 100.0 100.0 100.0
L3 Larix principis-rupprechtii Mayr 23 23 0 0 23 100.0 100.0 100.0
L4 Larix principis-rupprechtii Mayr 21 22 1 0 21 100.0 95.5 97.7
L5 Larix principis-rupprechtii Mayr 27 27 0 0 27 100.0 100.0 100.0
Q1 Picea wilsonii 58 66 9 1 57 98.3 86.4 91.9
Q2 Picea wilsonii 51 62 11 0 51 100.0 82.3 90.3
Q3 Picea wilsonii 27 27 1 1 26 96.3 96.3 96.3

Sum 291 311 22 2 289 99.3 92.9 96.0

Fig. 3. Extraction accuracy results of DBH
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0.34 m; in the moderate plot (Fig. 4b), the R² for tree 
height extraction was 0.91, with RMSE of 0.65 m and 
MAE of 0.38m; and in the complex plot (Fig.  4c), 
the R² was 0.94, RMSE was 0.81 m, and MAE was 
0.85 m.

Based on the fused point cloud data, in the simple 
plot (Fig. 5a), the crown width extraction resulted in 
an R² of 0.56, RMSE of 1.27m, and MAE of 1.03m. 
In the moderate plot (Fig. 5b), the crown width ex-
traction showed an R² of 0.68, RMSE of 0.91m, and 
MAE of 0.78m. In the complex plot (Fig. 5c), the R² 
was 0.49, RMSE was 1.51 m, and MAE was 1.24 m.

Zero-element distributions

The average values of three structural parame-
ters – W, U, and C – are presented in Table 4. In terms 

of stand-level distribution, the L1 and L3 plots in the 
Larix principis-rupprechtii Mayr forest show a random 
distribution (W ∈[0.475,0.517]). The L2 and L5 plots 
have an average W  ∈[0,0.475], indicating an even 
distribution, while plot L4 exhibits a clumped distri-
bution (W > 0.517). In the spruce forest, two plots 
(Q2, Q3) display a random distribution, while plot 
Q1 shows an even distribution. Overall, both larch 
and spruce forests have an average W value of 0.48, 
indicating a random distribution(W ∈[0.475,0.517]). 
Regarding size differentiation, the Larix principis-rup-
prechtii Mayr forest has an of 0.50, and Picea wilsonii 
forest has an U of 0.47. Both forests are in a moder-
ate state (W ∈(0.25, 0.5]), suggesting a general lev-
el of competition and that the size differentiation is 
not pronounced. In terms of density, the average C of 
the Larix principis-rupprechtii Mayr forest is 0.75, while 

Fig. 4. Extraction accuracy results of heigh

Fig. 5. Accuracy results of crown width

Table 4. Zero-element distribution of stand spatial structure in sample plots

Plot number L1 L2 L3 L4 L5 Sum Q1 Q2 Q3 Sum
W 0.51 0.43 0.50 0.61 0.39 0.48 0.45 0.49 0.51 0.48
U 0.51 0.46 0.40 0.47 0.50 0.48 0.46 0.48 0.48 0.47
C 0.93 0.88 0.54 0.64 0.32 0.75 0.96 0.91 0.93 0.94
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that of the Picea wilsonii forest is 0.94. This indicates 
that both forests are relatively dense, with the Picea 
wilsonii forest being denser than the Larix princip-
is-rupprechtii Mayr forest.

Univariate distribution

The univariate distribution is obtained by using a 
single spatial structure parameter (W, U, C) and its 
relative frequency distribution across different class-
es. From the univariate distribution charts (Fig. 6), it 
can be observed that in the Larix principis-rupprechtii 
Mayr sample plots (Fig. 6a) and Picea wilsonii sample 
plots (Fig. 6b), the majority of the trees are randomly 
distributed, accounting for about 50% in both cases. 
The next largest proportion of trees are in a uniform 
state, with a percentage ranging from 25% to 30%. 
The third largest group consists of trees in a very un-
even state, accounting for 17.89%. Trees in very une-
ven or very uniform states are fewer, each accounting 
for less than 4%, indicating that the overall tree dis-
tribution is random. The Neighborhood Comparison 
(U) is relatively evenly distributed across the class-
es, with no extreme values in terms of frequency, in-
dicating a uniform size differentiation of the trees, 
with no significant dominance or subordination of 
individual trees. The Crowding Degree (C) shows a 
gradually increasing trend in the distribution at val-
ues of 0, 0.25, 0.5, 0.75, and 1 (representing very 

sparse, sparse, moderately dense, quite dense, and 
very dense, respectively). This suggests that the tree 
crowns in the reference trees’ microenvironment are 
tightly spaced, and there are many instances of con-
tinuous tree crowns between the reference tree and 
the nearest neighboring tree, indicating intense com-
petition among the trees in the sample plot.

Binary distribution

Binary distribution utilizes two structural param-
eters (W, U, C) in combinations to describe, forming 
three combinations: W-U, W-C, and U-C (Fig. 7). As 
shown in Figure 6, most of the trees in Larix prin-
cipis-rupprechtii Mayr forests (Fig.  7a, 7c) and Picea 
wilsonii forests (Fig. 7b, 7d) are randomly distribut-
ed (W = 0.5), with the relative frequency gradually 
decreasing towards the two extreme states of very 
uniform (W = 0) and very uneven (W = 1), which 
roughly follows a normal distribution. The relative 
frequency value is highest when W = 0.5, indicating 
that the majority of trees in the stand are randomly 
distributed. In the W-C chart, it can be seen that when 
Larix principis-rupprechtii Mayr (Fig. 7c) and Picea wil-
sonii (Fig. 7d) are at the same level of W, the frequen-
cy of C is highest at the “fairly dense” (C = 0.75) and 
“very dense” (C = 1) levels. The cumulative relative 
frequencies of the light blue and yellow bars in the 
figure are 48% and 23% for Larix principis-rupprechtii 
Mayr and 82% and 11% for Picea wilsonii, respective-
ly, indicating that both Larix principis-rupprechtii Mayr 
and Picea wilsonii Mast. stands are highly dense. From 
the U-C chart, the combination of U and C is mostly 
located on the upper ridge (C = 0.5), suggesting that 
both Larix principis-rupprechtii Mayr and Picea wilsonii 
face intense competition.

Ternary distribution

The ternary distribution analysis using com-
mon spatial structure parameters, including U, W, 
and C, reveals similar distribution patterns for Lar-
ix principis-rupprechtii Mayr (Fig. 8) and Picea wilsonii 
(Fig. 9). Figure 8a, 8b, 8c, 8d, and 8e represent the 
five distribution states of Larix principis-rupprechtii 
Mayr trees under the W-U bivariate distribution with 
varying levels of C: 0 (very sparse), 0.25 (sparse), 
0.5 (moderately dense), 0.75 (fairly dense), and 1 
(highly dense). Similarly, Figure 9a, 9b, 9c, 9d, and 
9e show the corresponding distribution states for Pi-
cea wilsonii under the same W-U bivariate distribu-
tion.For Larix principis-rupprechtii Mayr, the trees pre-
dominantly exhibit a random distribution to highly 
dense growth with a dominance of absolute disad-
vantage, with the highest frequency of distribution 
observed at C = 0.75 and C = 1, indicating that the 
forest stands are relatively dense to highly dense. As Fig. 6. Unitary distribution
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observed in Figure 7, at the same U-C level, the fre-
quency of random distribution (W = 0.5) is the high-
est for Larix principis-rupprechtii Mayr, suggesting that 
most trees follow a random distribution. In contrast, 

Picea wilsonii stands are mostly characterized by ran-
dom distribution transitioning to high density, with 
the highest frequency observed at C = 1 (Fig. 8e), 
signifying highly dense tree stands. Notably, there 

Fig. 7. Binary distribution
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is no distribution observed at C = 0 (Fig.  9a) and 
C = 0.25 (Fig. 9b) for Picea wilsonii, indicating the 
absence of sparse trees in these plots, with the ma-
jority of trees distributed in a dense pattern.

Considering that the W serves as a key indica-
tor for determining tree distribution patterns, when 
W = 1, the trees are very densely clustered, with in-
tense competition among individual trees, resulting 

Fig. 8. Ternary distribution of stand spatial structure of Larix principis-rupprechtii Mayr
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in poor stand stability. The U reflects the dominance 
status of trees within a stand, where U = 0 indicates 
that the trees are in a dominant class, with strong 
competitive ability, occupying a large share of the 

available resources and suppressing the growth of 
neighboring trees. The Crowding Degree (C) in-
dicates the degree of crowding between trees; a 
higher value represents higher spatial utilization. A 

Fig. 9. Ternary distribution of stand spatial structure of Picea wilsonii
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reasonable crowding degree ensures that the stand’s 
space is effectively utilized while maintaining a bal-
ance where trees can grow without negatively af-
fecting each other. When C = 1, the stand is overly 
dense, with high crown overlap, which negatively 
impacts the potential growth of trees.Based on these 
criteria, the harvesting decision-making process is 
formulated as follows: trees that meet all three con-
ditions (W = 1, U = 0, C = 1) are defined as primary 
cutting trees, while those that meet any two of the 
three conditions are categorized as secondary cutting 
trees. This approach results in the potential logging 
tree statistics (Table 5) and a schematic diagram of 
thinning harvesting in Larix principis-rupprechtii Mayr 
and Picea wilsonii sample plots (Fig. 10).

Discussion
Multivariate distribution of stand spatial 
structure parameters based on fused 
point cloud

Traditional methods for obtaining forest param-
eters and stand spatial structure data often rely on 
field surveys, which require extensive manual meas-
urements of tree height, diameter at breast height 
(DBH), crown width, and other information. These 
methods are labor-intensive, costly, time-consuming, 

and not conducive to the further application of 
stand spatial structure research. This study uses 
fused point cloud data as the source, offering high 
precision in identifying and labeling individual tree 
positions, thus providing a convenient means for 
studying stand spatial structure and the precise lo-
calization of harvested trees.The study employs mul-
ti-source LiDAR data and applies point cloud seg-
mentation methods to extract tree parameters. The 
RMSE for the extraction of DBH is 1.58  m, crown 
width is 1.3 m, and tree height is 1.21m. Additional-
ly, single-source BLS point cloud data were used for 
individual tree segmentation, with RMSE values for 
DBH extraction at 1.63 cm, crown width at 1.62 m, 
and tree height at 1.21 m. The fused point cloud ex-
traction of crown width and tree height shows sub-
stantial improvements in accuracy over the BLS point 
cloud, with notable increases in R² and reductions in 
RMSE. UAV-LiDAR compensates for gaps in canopy 
data from BLS point cloud scanning.To verify wheth-
er the accuracy of single-tree point cloud information 
obtained from the fused data affects the stand spa-
tial structure parameters, the Kolmogorov-Smirnov 
(K-S) test was used to compare the stand spatial 
structure parameters calculated from the extract-
ed point cloud data with those derived from actual 
measurements. The null hypothesis for this test is 
that both sample sets originate from the same pop-
ulation. Validation or rejection of this hypothesis 

Table 5. Statistics of potential harvested trees

Plot number L1 L2 L3 L4 L5 Q1 Q2 Q3 Sum
Primary Cutting Trees 0 0 0 0 0 0 0 0 0
Secondary Cutting Trees 6 5 1 1 0 10 8 4 35

Fig. 10. Schematic diagram of thinning forest. d is the buffer width, d = 2 m
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helps identify any influencing factors.As shown in 
Table  6, the K-S test for the and parameters yields 
P-values of 1.00 (P > 0.05), indicating no significant 
differences. However, the K-S test for the parameter 
yields a P-value of 0.00 (P < 0.05), primarily due to 
the lower accuracy of crown extraction during in-
dividual tree segmentation. Aside from density, no 
significant differences were observed for the other 
parameters.Subsequently, multivariate distribution 
calculations for stand spatial structure parameters 
were performed using both detection data and actu-
al measurement data. A paired t-test was applied to 
assess whether there were significant differences be-
tween the multivariate distributions obtained from 
the single-tree point cloud data and those derived 
from actual measurements. According to Table  7, 
the t-test results for Larix principis-rupprechtii Mayr 
stand structure extraction and actual values show 
P-values greater than 0.05, indicating no significant 
differences. Similarly, Table  8 shows that for Picea 
wilsonii stands, the multivariate distribution t-test 
results also indicate no significant differences (P > 
0.05). This demonstrates that single-tree point cloud 
information extracted from fused point cloud data 
can be effectively used for multivariate distribution 
analysis of stand spatial structure. Other scholars 
have conducted studies on forest stand spatial struc-
ture using field-measured data from the Huoditang 
Experimental Forest Farm. Their research indicates 
that the horizontal spatial distribution pattern of co-
niferous forests in the Huoditang region is predom-
inantly random or clumped, with random distribu-
tion accounting for more than 50%. The diameter at 
breast height (DBH) is uniformly distributed, and U 

is dominated by dominant and subdominant trees. 
The mingling degree shows that the spatial isolation 
of tree species is primarily concentrated at moderate 
mingling levels or higher, with high crowding levels, 
which is consistent with the results of this study 
(Zhang et al., 2014; Shi et al., 2008). Therefore, uti-
lizing fused point cloud data (U-T LiDAR) to analyze 
the spatial structure of artificial coniferous forests 
yields results that differ minimally from field sur-
vey data, suggesting that it can further replace field 
measurement methods.

The use of LiDAR point cloud data fusion tech-
nology for multi-variable distribution analysis of 
forest spatial structure parameters offers significant 
advantages. This method can construct a three-di-
mensional network of trees within a forest through 
a systematic process of measurement → extraction 
→ calculation → screening → decision-making, in-
tegrating various parameters of forest structure, in-
cluding detailed information such as precise tree lo-
cations. Additionally, it can quickly identify potential 
harvesting trees (Fig.  9), efficiently evaluating the 
spatial structure of the forest without the need for 
traditional field measurements such as inter-tree dis-
tances and angles. This method is more efficient than 
traditional approaches in determining the location of 
potential harvest trees, enhancing the feasibility of 
forest operations, significantly reducing survey costs, 
and enabling the collection of forest information over 
a larger area.

The limitation of this study is that the specific 
optimization degree of the stand spatial structure 
adjusted according to this suggestion is not clear. 
Only the tall trees in the stand are considered, and 

Table 6. K-S test of the average value of spatial structure parameters

Parameters
Larix principis-rupprechtii Mayr Picea wilsonii

Maximum Absolute Difference P Maximum Absolute Difference P
W 0.044 1.000 0.011 1.000
U 0.033 1.000 0.054 1.000
C 0.300 0.000 0.516 0.000

Table 7. T-test of Larix principis-rupprechtii Mayr stand spatial structure

Type Paired data
95% Confidence Interval

t df P value
Lower Limit Upper Limit

Zero-element distributions Extraction – Measured −21.99% 32.71% 0.84 2 0.49
Univariate distribution Extraction – Measured −5.88% 5.88% 0.00 14 1.00
Binary distribution Extraction – Measured −0.86% 0.86% 0.00 74 1.00
Ternary distribution Extraction – Measured −0.23% 0.23% 0.00 123 1.00

Table 8. T-test of Picea wilsonii stand spatial structure

Type Paired data
95% confidence interval

t df P value
Lower limit Upper limit

Zero-element distributions Extraction – Measured −40.56% 26.41% −0.91 2 0.46
Univariate distribution Extraction – Measured −9.12% 9.12% 0.00 14 1.00
Binary distribution Extraction – Measured −1.29% 1.29% 0.00 74 1.00
Ternary distribution Extraction – Measured −0.33% 0.33% 0.00 124 1.00
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the effects of shrubs, herbs and ground cover on the 
stand spatial structure are not considered.Second-
ly, this study include the use of single temporal and 
spatial data, with a lack of data collection for mul-
ti-temporal and multi-spatial complexity datasets. 
The LiDAR point cloud data collected for this study 
lacks comprehensive seasonal and geographical cov-
erage, as sampling and research were not conducted 
across different temporal and spatial sites. Future 
work could involve data collection for different for-
est types and seasons, dynamically monitoring key 
factors of forest spatial structure. On the other hand, 
this study did not perform single-tree classification 
and recognition on the fused data, lacking the extrac-
tion of mixed forest density and the identification of 
diseased and dead trees. Moreover, the spatial struc-
ture of the forest in this study mainly focuses on the 
horizontal distribution pattern of trees, lacking anal-
ysis of vertical structure; also, information such as 
the age of individual trees, diameter class and forest 
age were not added into the forest spatial parame-
ter analysis, so as to obtain multivariate distribution 
characteristics of stand spatial structure at more lev-
els. The spatial structure characteristics of horizon-
tal direction and vertical direction were combined, 
which provided directions for future research.

Forest stand spatial structure 
parameter multivariate distribution 
analysisultivariate distribution of stand 
spatial structure parameters based on 
fused point cloud

The multi-dimensional distribution of spatial 
structure parameters provides important criteria for 
the precise selection of trees for forest management 
and harvesting. It not only reflects the degree of iso-
lation between tree species, distribution patterns, 
and their crowding conditions, but also serves as 
a crucial basis for deciding which trees to retain or 
cut. This information allows for the optimization of 
the stand’s spatial structure. From the results of the 
zero-element analysis, it can be observed that the 
majority of trees in coniferous forests are distrib-
uted randomly, in a moderate state, and tend to be 
relatively dense. The univariate distribution graph 
(Fig. 6) shows that the distribution of W at levels 0 
and 1 is minimal, while the most frequent distribu-
tion occurs at 0.5. This suggests that absolute distri-
bution structural units are rarely seen in coniferous 
forests, which is due to the fact that these stands are 
primarily secondary forests formed after disturbance 
on the basis of the original coniferous forests.From 
the univariate distribution of C, coniferous forest 
stands are generally in a highly dense state, with 
good growth conditions, but the trees are very close 

to each other, leading to significant canopy overlap. 
This results in poor light conditions for the trees in 
the lower canopy. Such a situation could slow down 
the natural regeneration speed under the canopy, 
which may be detrimental to the forest’s sustainable 
development and management.From the analysis of 
the binary and ternary distributions, the multi-di-
mensional distribution refines the zero-element and 
univariate distributions. In these distributions, there 
are no trees with unreasonable values in all three 
structural parameters (W = 1, U = 0, C = 1), and 
35 trees (about 12%) show two unreasonable param-
eters.When selecting trees for potential harvesting, 
the structural parameters should be taken into ac-
count, adjusting competition within the stand, spa-
tial distribution patterns, and the degree of isolation 
between tree species. Regarding W, when the stand 
is generally randomly distributed, trees with a W 
greater than or equal to 0.75 should be selected as 
adjustment targets. Additionally, to reduce compe-
tition pressure on dominant trees and create more 
living space, trees with a Crowding Degree greater 
than 0.75 and a Neighborhood Comparison smaller 
than 0.25 should be selected as adjustment targets. 
By using this approach and integrating the multi-di-
mensional distribution results, the spatial structure 
of the stand can be adjusted to bring it closer to a 
natural state.

In conclusion, the following harvesting sugges-
tions are proposed: The first round of harvesting 
should target dead standing trees and trees affect-
ed by pests and diseases. In the second, third, and 
fourth rounds, select trees that have unreasonable 
values in all three parameters, two parameters, and 
one parameter, respectively, as the harvesting tar-
gets. Simultaneously, conduct light thinning to open 
up growth space for the upper canopy trees, reduce 
canopy closure, and stand density, allowing the lower 
canopy trees to better utilize light, promoting growth 
and development, and enhancing stand regeneration.

Conclusions

The study uses eight 20 m×30 m coniferous for-
est plots at the Huoditang Experimental Forest Farm 
of Northwest A&F University as the research area 
to explore the multi-dimensional distribution anal-
ysis of spatial structure parameters based on fused 
point cloud data, and the following conclusions are 
drawn: 1) The point cloud fusion performs well, 
compensating for the point cloud gaps inherent in 
single-platform LiDAR data sources. The average 
DEM difference of each plot before and after the mul-
ti-platform point cloud fusion is less than 6 cm, with 
a standard deviation of less than 7 cm, achieving cen-
timeter-level vertical accuracy. After registration, the 
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positions of individual trees align closely with the 
field-measured locations, with coordinate differences 
all being less than 0.5 m, indicating good horizontal 
alignment of the fused point clouds. 2) The fusion of 
point clouds overcomes the shortcomings of a single 
data source, providing a more reliable guarantee for 
accurately extracting forest parameters. The overall 
detection rate of tree counts obtained from the fused 
point cloud is 99.3%, which is a 13% improvement 
compared to a single data source, and the F-measure 
is 96%, an improvement of 7.2%. The total accura-
cy for diameter at breast height (RMSE = 1.58 cm), 
tree height (RMSE  =  1.21 m), and crown width 
(RMSE =  1.30 m) is the highest. Among the three 
sample plots, the individual tree detection rate is 
above 98%, the precision is greater than 82%, and 
the F-measure is above 90%. The correlation coef-
ficient (R²) for diameter at breast height extraction 
is greater than 0.92, the RMSE is less than 2.01 cm, 
and the MAE is less than 1.22 cm. For tree height 
extraction, the correlation coefficient (R²) is above 
0.90, RMSE ranges from 0.55 m to 1.63 m, and MAE 
is between 0.38 m and 0.85 m. For crown width ex-
traction, the RMSE ranges from 0.91 m to 1.51 m, 
and MAE ranges from 0.78 m to 1.24 m. As the com-
plexity of the sample plots increases, the extraction 
accuracy of all parameters decreases. 3) The fusion 
of multi-platform LiDAR data to obtain forest stand 
spatial structure can to some extent further replace 
field survey measurements. After performing the 
K-S test, there is no significant difference between 
the extracted values and the measured values for 
key forest stand spatial structure parameters (aver-
age angle scale, average neighborhood comparison) 
(P > 0.05). However, for the average crowding de-
gree, there is a significant difference (P < 0.05). 4) 
The single-tree point cloud information extracted 
from the fused point cloud can be used for multi-var-
iate distribution analysis of forest stand spatial struc-
ture. The research results show that the t-test results 
for the multi-variate distribution of forest stand 
spatial structure and the actual values do not show 
significant differences (P values > 0.05). The forest 
stand spatial structure obtained from the fused point 
cloud is as follows: the Larix principis-rupprechtii Mayr 
forest has a random distribution (W = 0.48), mod-
erate size differentiation (U  =  0.50), and average 
crowding degree (C = 0.75); the Picea wilsonii forest 
has a random distribution (W = 0.48), moderate size 
differentiation (U = 0.47), and relatively dense state 
(C = 0.94).
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