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Abstract: Seed structural and physiological properties, together with environmental conditions, control 
dormancy. Cold stratification is known to alleviate seed physiological dormancy promoting seed germina-
tion. The present research aimed to investigate changes in the proteome during seed cold stratification and 
germination of silver fir (Abies alba Mill.), a conifer gymnosperm tree native to the mountains of Europe. 
Analysis of the identified proteins’ functions and associated metabolic pathways would enhance the knowl-
edge of these processes. The proteomes were analysed separately for embryo and megagametophyte using 
2D electrophoresis. Forty-nine proteins displaying significant differential abundance during seed dormancy 
breaking and germiantion were characterised using mass spectrometry. Thirty four proteins were charac-
teristic of the embryo germination and 41 of the megagametophyte. Twenty-six proteins differed between 
embryos and megagametophytes. Thirteen spots were identified as vicilin-like storage proteins, which were 
generally abundant in the megagametophyte, slowed down accumulation during cold stratification, and 
reached minimal abundance during germination. Vicilin-like proteins are the main storage reserves of most 
angiosperms and gymnosperms. Biological process analysis showed that proteins of both seed tissues were 
generally associated with protein folding, defence response and seed maturation. Molecular function analy-
sis suggested an involvment of the identified proteins in ATP binding, nutrient reservoir activity and metal 
ion binding. Proteins were generally predicted to localise in the nucleus, cytosol and plastids. Dormancy 
breaking and germination of silver fir seed required proteins involved in diverse processes: facilitating plas-
modesmata aperture (Gnk2-homologous domain-containing protein), nitrogen remobilisation from pro-
tein degradation (glutamine synthetase), abscisic acid signalling (cytochrome P450 protein CYP720PB12 ), 
transcription (R2R3-Myb14 transcription factor, HDAC) and protein modification (PNGase A).
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Introduction

Plants developed seed dormancy to prevent fur-
ther growth under unfavourable conditions (Sajeev 
et al., 2024). Dormancy is regulated by the seed’s 

structural and physiological characteristics as well as 
external environmental factors. Dormancy is initiat-
ed as part of the inner program governing seed mat-
uration. It can be induced by the seed covering struc-
tures originated from the mother plant or by embryo 
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itself, either independently or jointly (Sajeev et al., 
2024). In most species where dormancy is associated 
with mature embryo, the underlying mechanisms are 
linked to reversible metabolic processes, known as 
physiological dormancy (Bewley et al., 2013). Seeds 
exhibiting this type of dormancy can be induced to 
germinate through various treatments, including 
cold stratification (Yan & Chen, 2020).

Temperature is a critical environmental factor in-
fluencing seed dormancy and germination (Xia et al., 
2018; Klupczyńska & Pawłowski, 2021; Kurpisz & 
Pawłowski, 2022). Despite extensive research, the ex-
act mechanism by which temperature promotes ger-
mination of dormant seeds remains poorly understood 
(Carrera-Castaño et al., 2020). Previous research has 
suggested that dormancy-breaking mechanisms vary 
based on the depth of dormancy. Nevertheless, sim-
ilarities have been observed between the dormancy 
mechanisms in tree seeds and the herbaceous model 
plant Arabidopsis thaliana (Staszak et al., 2019). Pro-
teins associated with energy metabolism, heat shock 
proteins (HSP), aspartate aminotransferase, elonga-
tion factor-2 (EF-2), alfa-tubulin and late embryogen-
esis abundant (LEA) proteins, have been identified 
in Norway maple (Acer platanoides) and Arabidop-
sis, playing key roles in controlling germination 
(Pawłowski, 2009; Ruelland & Zachowski, 2010). 
Several processes have been proposed as components 
of the dormancy-breaking and germination pathways: 
temperature sensing (membrane modifications, cy-
toskeletal changes, protein conformation), signaling 
(redox state, ROS production, calcium sequestration, 
phosphorylation), and cellular responses (alterations 
in gene expression and metabolism) (Ruelland & 
Zachowski, 2010). Signal perception and transduc-
tion proteins, including abscisic acid (ABA) receptor, 
are associated with dormancy alleviation and germi-
nation of Arabidopsis seeds (Baudouin et al., 2022; 
Wang et al., 2022). Additionally, calreticulin, a cal-
cium-binding protein, has been linked to dormancy 
breaking in tree seeds such as Norway maple, syc-
amore (Acer pseudoplatanus) and beech (Fagus sylvat-
ica) (Pawłowski, 2007, 2009; Pawłowski & Staszak, 
2016). The observed increase in actin levels during 
dormancy alleviation suggest a shift toward cell elon-
gation and expansion necessary for seed germination 
(Pawłowski et al., 2020). Transcription regulators 
also influence the expression of genes involved in 
dormancy break and germination, alongside trans-
lation factors, proteasome activity, and methionine 
metabolism, which contributes to DNA methylation 
(Pawłowski, 2010; Zhang et al., 2015; Pawłowski & 
Staszak, 2016). The final stages of dormancy-break-
ing involve metabolic activation, including energy 
production, methionine metabolism, protein degra-
dation, and seed storage reserves mobilisation (Deng 
et al., 2016; Mei et al., 2017; Wu & Shen, 2021; Ren 

& Lv, 2024). These processes enable seeds transition 
from dormancy to germination by triggering cell cycle 
activation (Pawłowski et al., 2004).

Proteomics has significantly advanced our under-
standing of seed germination, proving particularly 
valuable for studying various forest taxa, including 
Quercus ilex (Romero-Rodriguez et al., 2015; Rey 
et al., 2019; Romero-Rodríguez et al., 2019), Fagus 
sylvatica (Pawłowski, 2007), Acer (Pawłowski, 2009; 
Pawłowski & Staszak, 2016), Populus (Zhang et al., 
2017) and Araucaria angustifolia (Balbuena et al., 
2011). However, most research has focused on seeds 
without dormancy, with limited studies addressing 
dormancy breaking in tree seeds, especially within 
the gymnosperms. Similar to other model species 
with dormant seeds, research on Taxus chinensis has 
revealed that ABA and gibberellic acid (GA) influ-
ence protein translation, and the relation between 
these phytohormones dictates whether seeds remain 
dormant or germinate (Chen et al., 2023). During 
germination, energy derived from carbohydrate me-
tabolism (via the tricarboxylic acid cycle (TCA) and 
glycolysis) supports the pentose phosphate pathway, 
while lipid-derived energy comes mainly from tria-
cylglycerol lipolysis (Chen et al., 2023).

Silver fir (Abies alba) is a coniferous species of sig-
nificant ecological and economic importance, native 
to the mountains of Central and Southern Europe 
(Litkowiec et al., 2016). In Poland, due to the de-
cline of populations caused by air pollution, silver 
fir is part of a restoration program (Litkowiec et al., 
2016). Silver fir seeds exhibit physiological dorman-
cy regardless of their moisture content or age. Their 
germination requires a period of moistening followed 
by stratification for approximately three months at 
1–5 °C. Proteomics, combined with genome sequenc-
ing, offers unprecedented opportunities to identify 
the full suite of expressed proteins and relate their 
variations to seed development, maturation, and 
germination (Staszak & Pawłowski, 2012). In this 
study, we used a proteomic approach to analyse for 
the first time dormancy breaking and germination in 
silver fir seeds, thereby characterising the identity of 
proteins implicated in the regulation of these seed 
traits. We expand the current understanding of dor-
mancy and germination, which have been predomi-
nantly explored in angiosperms, by focusing on the 
unique physiological and proteomic changes of a 
gymnosperm.

Materials and Methods
Plant materials and experimental design

Silver fir (Abies alba Mill.) seeds were collected 
from minimum 10 trees, and polled together, in the 
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Kórnik Arboretum in Poland (N52°14', E17°05') in 
2017. The seeds were initially dried at ambient tem-
perature and humidity until they achieved a moisture 
content of 10% (fresh weight basis). Thereafter, seeds 
were stored shortly for just a few weeks in plastic box-
es at −3 °C. After imbibition, stored seeds underwent 
cold stratification at 3 °C – a temperature known to 
break dormancy and induce germination – in closed 
plastic trays without medium and in the dark. After 
stratification, seed portions were moved weekly to a 
constant temperature of 20 °C for germination, start-
ing from week 6 to week 9 of stratification. One por-
tion of stratified seeds was subjected to the germina-
tion test at 3 °C. The germination test was conducted 
following the recommendations of the International 
Seed Testing Association (ISTA, 2019) and Suszka 
(Suszka, 2000), using four replicates of 50 seeds for 
each treatment. Germination was monitored weekly, 
and seeds were scored as germinated when the radicle 
protruded through both the testa and pericarp by at 
least 1 mm. Each week, during both stratification and 
germination tests, seeds were visually inspected, and 
water loss was prevented. Analysis of variance (ANO-
VA) and a Tukey–Kramer HSD were used to assess 
the influence of treatment on seed germination at p 
< 0.05 (JMP software, SAS Institute, Cary, NC, USA), 
assumptions to run one-way ANOVA were fulfilled.

Protein extraction

All analyses were performed using three biological 
replicates, 50 seeds each. Seed samples were collect-
ed weekly, starting with dry dormant seeds, followed 
by seeds undergoing cold stratification at 3  °C from 
week 1 to week 6, without any signs of germination, 
and finally, germinated seeds at 20 °C after 8 weeks of 
stratification at 3 °C, characterised by a 1 mm radicle 
protrusion. Seeds were dissected into embryos and 
megagametophytes, which were then frozen in liquid 
nitrogen and stored at −80  °C. Protein extracts for 
electrophoresis were prepared following the protocol 
of Pawłowski et al. (2019). Samples were homogenised 
in a 10% [w/v] solution of trichloroacetic acid (TCA) 
in acetone containing 20 mM dithiothreitol (DTT). 
After overnight protein precipitation at −20  °C, the 
homogenate was centrifuged at 16000g for 5 minutes 
at 4  °C. The resulting pellet was resuspended in ac-
etone with 20 mM DTT and centrifuged again. The 
supernatant was discarded, and the pellet was vacu-
um dried for 2 h. Proteins were dissolved in a lysis 
buffer containing 7 M urea, 2 M thiourea, 2% [w/v] 
3-[(3-cholamidopropyl)dimethylammonio]-1-pro-
panesulfonate (CHAPS), 1,5% [v/w] DTT, and 0.5% 
[v/v] Immobiline pH Gradient (IPG) buffer 4–7. After 
centrifugation at 16000g for 5 minutes at 4 °C, total 
protein concentration was measured according to the 
method described by Ramagli & Rodriguez (1985).

Protein electrophoresis, 2-DE IEF/SDS-
PAGE

Proteins (100 mg for silver and 600 μg for colloi-
dal Coomassie Blue staining) were first separated by 
isoelectric focusing using rehydrated immobiline dry 
strips (24 cm, linear pH gradient 4–7) in a rehydra-
tion buffer containing 6 M urea, 2 M thiourea, 2% 
[w/v] CHAPS, 20 mM [w/v] DTT, and 0.5% [v/v] 
IPG buffer (pH 4–7). Separation was performed with 
an Ettan IPGphor 3 IEF System (GE Healthcare) ac-
cording to the manufacturer’s protocol for 24-cm 
strips. The focused strips were equilibrated sequen-
tially: first in equilibration solution I (6 M urea, 1.5 
M Tris-HCl, pH 8.8, 30% [v/v] glycerol, 2% [w/v] 
SDS, 1% [w/v] DTT) and then in equilibration solu-
tion II (identical to solution I but with 2.5% [w/v] 
iodoacetamide instead of DTT) for 10 minutes each. 
For the second dimension (SDS-PAGE), pre-cast 
Ettan Double-Dimension Analysis using Labcast or 
Precast Gels (DALT) 12.5% (w/v) polyacrylamide 
gels (GE Healthcare) were used in an Ettan Dalt Six 
electrophoresis chamber for 1 h at 80 V followed by 
5 h at 500 V. Molecular weight markers (GE Health-
care) were loaded alongside the Immobiline strip for 
size reference. Three replicate gels were run for each 
treatment (n = 3). Following electrophoresis, gels 
were stained with silver for densitometric analyses 
and with colloidal Coomassie Blue for Mass Spec-
trometry (MS) analyses (Neuhoff et al., 1988).

Analysis of 2D PAGE gels

Gels were scanned and analysed using 2D Image 
Master 7 Platinum software (GE Healthcare). After 
spot detection, gels from three independent biolog-
ical replicates were aligned and matched, and the 
normalised spot volumes were calculated. Statisti-
cal analyses, including measures of central tendency, 
dispersion, and overlapping between gel sets/classes, 
were conducted to identify variation in spot abun-
dance. Assumptions to run one-way ANOVA were 
fulfilled. Spots with significant variation in abun-
dance were subjected to ANOVA followed by a Tuk-
ey–Kramer HSD test (JMP software, SAS Institute, 
Cary, NC, USA) to identify differences (p < 0.05) for 
two factors: time and seed structure (embryo and me-
gagametophyte). Proteins with significant changes in 
abundance were subsequently identified using MS.

Protein identification and quantification

The gel spots were processed using a standard in-
gel digestion protocol. Proteins were reduced with 
10 mM [w/v] DTT for 30 min at 56  °C, alkylated 
with 55 mM iodoacetamide for 45 minutes in the 
dark at room temperature, and digested overnight 
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with Sequencing Grade Modified Trypsin (Promega 
V5111) in 25 mM ammonium bicarbonate (25 ng 
μl−1 of trypsin). The resulting peptides were eluted 
from the gel matrix with 0.1% [v/v] trifluoroacetic 
acid (TFA) in 2% [v/v] acetonitrile (ACN).

Peptide mixtures were analysed using liquid 
chromatography coupled with a mass spectrometer. 
Samples were first concentrated and desalted on a 
RP-C18 pre-column (nanoACQUITY Symmetry® 
C18, Waters, USA), and further peptide separation 
was carried out on a nano-Ultra Performance Liquid 
Chromatography (UPLC) RP-C18 column (Waters, 
BEH130 C18 column, 75 μm i.d., 250 mm long) us-
ing a nanoACQUITY UPLC system (Waters). Separa-
tion was achieved with a linear gradient (0–60% [v/v] 
ACN over 120 min) in the presence of 0.05% [v/v] 
formic acid at a flow rate of 150 nl/min. The column 
outlet was directly connected to the Electrospray Ion-
ization (ESI) ion source of the 3'-Orbitrap Velos mass 
spectrometer (Thermo Scientific, San Jose, USA), 
operating in a data-dependent MS to MS/MS switch 
mode. An electrospray voltage of 1.5 kV was applied. 
A blank run was performed before each analysis to 
avoid cross-contamination from previous samples.

The Mascot search algorithm (http://www.ma-
trixscience.com) was utilised for protein identifica-
tion against the NCBInr database (http://www.ncbi.
nig.gov). Protein identification was performed us-
ing the Mascot probability-based molecular weight 
search and MOWSE score. The ions score was calcu-
lated as −10 × log(P), where P represents the proba-
bility that the observed match was random. Peptides 
with a Mascot score exceeding the threshold value, 
corresponding to < 5% false positive rate, were con-
sidered positively identified.

Statistical and bioinformatic analyses of 
proteins

EPCLUST hierarchical clustering was chosen to 
identify the main classes of variations in the data 
matrix of mean-centred spot percentage volumes. 
Correlation-measured distances and the UPGMA al-
gorithm were employed for the analysis. Identified 
proteins were categorised based on biological pro-
cesses, molecular functions, and subcellular localisa-
tion according to gene ontology (GO) annotations, 
using the UniProt database and Arabidopsis refer-
ence genome (https://www.uniprot.org/) (Table S5). 
The R software was used for statistical analysis and 
graphical presentation of the GO and heatmap data 
(R Core Team). The analysis involved ggplot2 (Wick-
ham, 2016), dplyr (Wickham et al., 2023), tidyr 
(Wickham H, Vaughan D, Girlich M, 2024), stringr 
(Wickham, 2023) tidyverse (Wickham et al., 2019) 
and readxl (Wickham H, Bryan J, 2023) libraries. A 

Venn diagram of protein quantification according to 
seed stratification and germination conditions was 
generated using the Bioinformatics and Evolutionary 
Genomics tool (http://bioinformatics.psb.ugent.be/
webtools/Venn/).

Results
Germination

The analysis of silver fir seed germination capacity 
(i.e. the total percentage of seeds that germinated at 
a certain time) revealed that germination was slow-
est and reduced when seeds were stratified and kept 
at 3  °C, reaching only 52% by week 14 (Fig. 1). In 
contrast, transferring the seeds to 20 °C after 8 weeks 
of cold stratification resulted in the highest germi-
nation capacity, reaching 84% by week 10. Similarly, 
moving the seeds to 20 °C after 6, 7, and 9 weeks of 
cold stratification led to the germination capacities of 
76, 68, and 50%, respectively, within only two weeks. 
Thus, exposure to 20  °C, compared to continuous 
stratification at 3 °C, increased and significantly ac-
celerated germination, reducing the time of reaching 
maximal germination capacity from 7 to 2 weeks.

Proteome maps and identification 
results

Changes in protein abundances were analysed 
by comparison of the two-dimensional gels across 

Fig. 1. Germination of silver fir seeds assessed after seed 
imbibition, stratification at 3  °C, and subsequent 
transfer to 20  °C, starting from week 6 to week 9 of 
stratification. Germination of seeds maintained at 3 °C 
throughout the stratification period was also observed. 
Error bars represent standard errors (n = 4, 50 seeds 
each). Data labelled with different letters indicate sig-
nificant difference (p < 0.05), based on ANOVA and 
Tukey–Kramer HSD test
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Fig. 2. Positions of the identified protein spots on the silver-stained 2D-PAGE gels of silver fir seeds. Proteome variation 
during dormancy breaking via stratification and germination in (A) the embryo and (B) the megagametophyte. These 
numbered positions correspond to the 49 separated and characterised proteins, which combine the results of 1500 
spot group analysis, as listed in Table S1 (Supplementary File 1). Specific spots display variations during stratification 
and between the embryo and megagametophyte
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Fig. 3. Heatmap and hierarchical clustering analysis of the 49 identified silver fir seed proteins, which varied during dor-
mancy breaking and germination in the embryo (A) and in megagametophyte (B). The spots indexed in Table S1 were 
classified based on their volume percentage changes from dry seeds through stratification to germination, using the 
UPGMA method. Dry – dry dormant seeds; w1, w3, w6 – stratified seeds for weeks 1, 3 and 6; germ – germinated 
seeds.
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successive stages of dormancy breaking, including 
dry dormant seeds, seeds undergoing cold stratifica-
tion at 3 °C, and germinated seeds at 20 °C. Signifi-
cant variations in spot volume between stages were 
estimated to identify differentially abundant pro-
teins. The effect of stratification was investigated and 
highligheted key protein variations in the embryo 
and megagametophyte (Fig. 2). Proteins exhibiting 
significant up- or down-regulation were identified as 
key candidates for further characterisation via MS.

Using Image Master 7 Platinum (GE Healthcare), 
1500 proteins were found on silver-stained 2D-PAGE 
gels. Among them, 49 spots showed significant abun-
dance variability (ANOVA), presenting about 3% of 
the total proteins on the master gels (Supplementary 
File, Table S1, S2, S3; and Fig. 2). The protein pat-
terns from week three of stratification were chosen 
to create two master gels for the embryo and megag-
ametophyte (Fig. 2, panels A and B, respectively), in-
corporating the statistical analysis results of protein 
volume changes induced by cold stratification.

A total of 34 spots were regulated during seed 
dormancy breaking in the embryo, and 41 spots in 
the megagametophyte. Additionally, 26 spots showed 

variability in both embryos and megagametophytes 
(Supplementary File, Table S4, Venn diagram). The 
proteins with modulated expression levels were ana-
lysed for amino acid sequences using MS. These ami-
no acid sequence were then matched against protein 
databases in NCBI using MASCOT, leading to suc-
cessful identification of all analysed proteins. The MS 
analysis revealed homology of the identified embryo 
and megagamethophyte proteins for 46 proteins 
from the database, with one protein uncharacterised 
and two labelled as hypothetical (Supplementary 
File, Table S1).

To summarise the data in Table S1 and classify 
the proteins with similar expression profiles during 
seed dormancy breaking, heatmap and hierarchical 
clustering were applied to the identified spots for 
both the embryo as well as for the megagametophyte 
(Fig. 3). Spots were clustered based on the volume 
percentage variations from the dry seeds to germi-
nation, using the unweighted pair group method 
with arithmetic mean (UPGMA). For the embryo, 
three main clusters could be distinguished. Cluster 
I contained 3 protein whose abundance increased 
during germination (Fig.  3A). Cluster II contained 

Fig. 4. Gene Ontology (GO) functional annotation of the identified silver fir seed proteins from both embryo and me-
gagametophyte, categorised by biological process (A), molecular function (B), and cellular component (C). UniProt 
database was used to classify the proteins (Supplementary File, Table S5, S6, S7, S8)
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12 proteins, whose abundance decreased during dor-
mancy breaking. Cluster III contained 26 proteins 
whose abundance decreased during dormancy break-
ing and germination. For the megagametophyte, 
three main clusters were also identified. Cluster I 
included 9 proteins whose abundance decreased 
during germination, cluster II included 20 proteins 
whose abundance increased during dormancy break-
ing and germination, while fewer proteins (5) were 
grouped in cluster III, whose abundance decreased 
during dormancy breaking (Fig. 3B).

The spots characterised as the same protein prob-
ably denote post-translational modifications (PTMs) 
of a single protein or various isoforms of the protein.

To gain further information into the biological 
regulation and functioning of identified proteins 
in dormancy breaking and germination of silver fir 
seeds, we performed gene ontology (GO) analysis, 
based mostly on the Arabidopsis protein homo-
logues (Supplementary File, Table S5). The biologi-
cal process characterisation revealed that three pro-
teins were associated with protein folding, defence 
response to fungus, seed maturation, and proteolysis 
(Fig. 4A; Supplementary File, Table S6). The molecu-
lar function analysis indicated that five proteins were 
linked to ATP binding, four to nutrient reservoir ac-
tivity, and metal ion binding (Fig. 4B; Supplementa-
ry File, Table S7). The cellular component analysis 
suggested that seven proteins were localised in the 
nucleus and cytosol, while four were found in the 
plastid (Fig. 4C; Supplementary File, Table S8).

Discussion

Seed germination is a paramount topic in plant 
research, however the mechanisms underlying this 
process are still not fully elucidated (Pawłowski et al., 
2024). Proteomics, as a powerful approach for func-
tional analysis, has been extensively implemented to 
study seed development, dormancy, and germination 
(Abril et al., 2011; Galland et al., 2017; Pawłowski 
et al., 2019). This study utilised proteomic analysis 
to investigate dormancy breaking and germination of 
silver fir seeds. The majority of protein accumulated 
at the end of dormancy breaking and in germinated 
seeds, marking a clear metabolic resumption as seeds 
transition from dormancy to germination (Staszak et 
al., 2017). The roles of the identified proteins and 
their associated metabolic processes are further 
discussed.

Storage reserve

Thirteen spots were identified as vicilin-like stor-
age proteins, which were predominantly abundant 
in the megagametophyte (Fig.  3B, Table S3). Their 

accumulation decreased with dormancy breaking and 
germination. These proteins serve as the main stor-
age reserves in plant species, including both angio-
sperms and gymnosperms. For example, vicilin-like 
storage proteins have been isolated during germina-
tion from Araucaria angustifolia, an endangered Brazil-
ian native conifer (Balbuena et al., 2011). These pro-
teins share identity with 7S globulins found in white 
spruce (Picea glauca) seeds (Newton et al., 1992). 
Studies on transcript expression suggest that ABA 
and sucrose directly influence their mRNA synthesis 
(Newton et al., 1992). In addition to vicilin-like stor-
age proteins, 2S seed storage proteins were also iden-
tified in the embryo and megagametophyte of silver 
fir (Fig. 3, Table S2 and S3). These storage proteins 
can provide carbon skeletons and energy necessary to 
support the early growth of silver fir.

Membrane transport

The Gnk2-homologous domain-containing pro-
tein, identified in the embryo (spot 277; Fig.  3A, 
Table S2) and megagametophyte (spots 239, 277; 
Fig. 3B, Table S3), has been characterised in gymno-
sperm as a seed storage protein with antifungal ac-
tivity (Miyakawa et al., 2014). The GnK2-1 domain 
of plasmodesmata-located proteins (PDLP7), in as-
sociation with callose and glucan endo-1,3-β-gluco-
sidase 10 (BG10), has also been implicated in the 
regulation of plasmodesmata opening and closure, 
processes essential for the intercellular movement 
of various molecules (Li et al., 2024; Chen et al., 
2024). Additionally, Gnk2 is expressed in the shoot 
apex and influences the control of Arabidopsis lateral 
root growth via auxin signalling (Bayer et al., 2008; 
Sager et al., 2020). Dormancy-breaking conditions 
altered its abundance: it increased in silver fir me-
gagametophyte and decreased in embryo. The elevat-
ed abundance of the Gnk2-homologous domain-con-
taining protein in the megagametophyte (Fig.  3B, 
Table S3) may be associated with the suppression 
of plasmodesmal trafficking. In contrast, its reduced 
abundance in the embryo (Fig. 3A, Table S2) could 
facilitate plasmodesmata aperture, thereby promot-
ing root growth.

Metabolism

The abundance of glutamine synthetase (spot 
870; Fig.  3A, Table S2) decreased in the embryo 
of silver fir during dormancy breaking. In Arabi-
dopsis, this enzyme is expressed in root tips, root 
hairs, and epidermis, where it plays a critical role 
in maintaining glutamine production homeostasis 
(Bernard & Habash, 2009). Glutamine synthetase 
is a central enzyme of nitrogen metabolism and ca-
talyses the assimilation of ammonium into amino 
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acids. Glutamine synthetase cytosolic isoenzymes 
assimilate ammonium from primary nitrogen as well 
as from various internal nitrogen recycling sources. 
Therefore, cytosolic glutamine synthetase is essen-
tial for the remobilisation of nitrogen from protein 
degradation (Bernard & Habash, 2009). Nitrogen re-
cycling is particularly important during seed germi-
nation, dormancy acquisition, active growth resump-
tion, and lignin biosynthesis during wood formation 
(Balbuena et al., 2011).

Glutathione S-transferase zeta (GSTZ, spot 886; 
Fig.  3A, Table S2) is a member of the glutathione 
S-transferase (GST) enzyme family, which plays a 
crucial role in metabolism, detoxification, and protec-
tion against oxidative stress (Öztetik, 2008). GSTZ 
detoxifies reactive intermediates that can accumu-
late in cells due to metabolic processes or environ-
mental factors. GSTZ uses glutathione as a cofactor, 
helping to control oxidative damage and maintain 
cellular redox homeostasis during seed germination 
(Frova, 2003; Kalemba & Ratajczak, 2018). In silver 
fir embryo, GSTZ reached its highest abundance in 
germinated seeds (Fig. 3A, Table S2). GST activity in 
Abies nordmanniana has been associated with system-
ic resistance during seed germination and seedling 
growth (Garcia-Lemos et al., 2020). Similar GSTZ 
expression patterns were observed during the dor-
mancy breaking of Acer platanoides and A. pseudoplat-
anus seeds (Pawłowski, 2009; Pawłowski & Staszak, 
2016) suggesting a positive impact on seed germina-
bility through a protective role.

CYP720PB12 (spot 23; Fig. 3B, Table S3) is a cy-
tochrome P450 protein that catalyses various mo-
no-oxygenation and hydroxylation reactions in plant 
growth and development (Xiang et al., 2023). Cy-
tochrome P450 reductase expression was differen-
tially regulated in the cotyledons, radicle and megag-
ametophyte of Douglas fir seeds (Tranbarger et al., 
2000), with its activity increasing during stratifica-
tion, germination and early seedling development. A 
similar increase was observed during stratification of 
silver fir, but only in the megagametophytes (Fig. 3B, 
Table S3). The CONSTITUTIVE PHOTOMORPHO-
GENIC DWARF (CPD) gene, encoding a cytochrome 
P450 monooxygenase is upregulated during Arabi-
dopsis seed germination (Piskurewicz et al., 2024). 
Xiang et al. (2023) found that cytochrome P450 
CYP77A4 directly balanced lipid mobilisation and 
reactive oxygen species (ROS) synthesis by the epox-
idizing lipids during seed germination. Additionally, 
Arabidopsis CYP707A encodes ABA 8'-hydroxylases, 
a key enzyme involved in ABA degradation (Kushiro 
et al., 2004). In summary, cytochrome P450 appears 
to be involved in seed dormancy breaking and germi-
nation of various species, possibly via its role in the 
hormonal control of these processes (Kushiro et al., 
2004; He et al., 2019; Yeon et al., 2022).

Malate dehydrogenase (MDH, spot 454; Fig.  3, 
Table S2 and S3) is an enzyme of the TCA cycle, 
while phosphopyruvate hydratase (enolase, spot 436; 
Fig. 3, Table S2 and S3) is a key enzyme in glycolysis. 
Both MDH and enolase were isolated from silver fir 
embryo and megagametophyte, with their abundance 
decreasing during dormancy breaking (Fig. 3, Table 
S2 and S3). The release of seed dormancy is associ-
ated with ATP accumulation, increased respiration, 
and metabolic pathways for energy production as 
glycolysis, electron transport chain and photosynthe-
sis (Romero-Rodriguez et al., 2015; Rey et al., 2019; 
Romero-Rodríguez et al., 2019). The results of this 
study align with previous proteomic investigations of 
Fagus sylvatica seed (Pawłowski, 2007).

The 6-phosphogluconate dehydrogenase NA-
DP-binding domain-containing protein (spot 287; 
Fig. 3, Table S2 and S3) is a homolog of glyoxylate/
succinic semialdehyde reductase 1 (GLYR1), which 
catalyses the NADPH-dependent conversion of gly-
oxylate to glycolate and succinic semialdehyde (SSA) 
to gamma-hydroxybutyrate (Zarei et al., 2017). This 
protein may function in redox homeostasis and con-
tribute to oxidative stress defence by detoxifying tox-
ic aldehydes, such as glyoxylate and SSA, which are 
generated during glycolate and GABA metabolism 
under abiotic stress conditions (Zarei et al., 2017). 
The abundance of GLYR1 in silver fir embryos de-
creased during dormancy breaking, but increased 
again in germinated seeds (Fig. 3A, Table S2). In the 
megagametophyte, GLYR1 reached its highest abun-
dance in the germinated seeds (Fig.  3B, Table S3), 
suggesting its role in reducing toxic aldehydes in ear-
ly-growing seed tissues during dormancy breaking by 
cold stratification.

Ketoacyl-CoA thiolase 2 (PDE1/KAT2, spot 876; 
Fig.  3B, Table S3) and its homologue acetyl-CoA 
C-acyltransferase (spots 578, 611, 650; Fig. 3, Table 
S2 and S3) catalyse a key reaction in fatty acid be-
ta-oxidation, which occurs prior to gluconeogenesis 
(Germain et al., 2001). The Arabidopsis KAT2 gene 
is expressed in reproductive tissues during seed ger-
mination and throughout seedling emergence (Kato 
et al., 1996; Germain et al., 2001; Footitt et al., 2007; 
Wiszniewski et al., 2014). Germain et al. (2001) sug-
gest that although gluconeogenesis using fatty acids 
is not essential for supporting seedling development, 
peroxisomal β-oxidation is is necessary to utilse tria-
cylglycerol stored in lipid bodies. In this study, KAT2 
abundance increased during stratification in silver fir 
megagametophyte (Fig. 3B, Table S3), but decreased 
in germinated seeds in both embryo and megagame-
tophyte (Fig. 3, Table S2 and S3). Therefore, these 
identified enzymes, likely involved in peroxisomal 
fatty acid β-oxidation, could mobilise storage lipids 
during seed dormancy breaking.
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Luminal binding protein (spot 584; Fig.  3A, Ta-
ble S2) is a homologue of Heat shock 70 kDa protein 
BIP2. In conjunction with other chaperones, Hsp70s 
play a crucial role in the folding and translocation 
of new synthesised proteins, and the degradation of 
damaged proteins under stress conditions. BIP pro-
teins are implicated in endosperm nuclei proliferation 
(Maruyama et al., 2010, 2020). A luminal binding 
protein was found exclusively in the embryo axes of 
silver fir, where its abundance decreased as dorman-
cy was broken and germination progressed (Fig. 3A, 
Table S2). This protein was also reported during the 
germination of barley and Arabidopsis seeds, where 
it was associated with stress defence (Bønsager et al., 
2007; Zhao et al., 2021). BIP2 likely involves protec-
tive processes during the initiation of seed germina-
tion (Pawłowski, 2007; Pawłowski & Staszak, 2016).

The R2R3-Myb14 transcription factor (spot 418; 
Fig. 3, Table S2 and S3) was identified in both the 
embryo and megagametophyte of silver fir. R2R3-
MYB factors regulate secondary metabolism, cell 
structure, disease and abiotic stress resistance, and 
hormone responses (Kranz et al., 1998). R2R3-
MYBs specifically control seed dormancy breaking 
and germination via ABA/GA signalling, influencing 
the expression of key genes, such as ABSCISIC ACID 
INSENSITIVE 5 (ABI5), DELAY OF GERMINATION 
1-LIKE 3 (DOGL3), and GA-STIMULATED ARABI-
DOPSIS 4 (GASA4) (Reyes & Chua, 2007; Kim et 
al., 2015; Zhao et al., 2022; Zhang et al., 2024; Li, 
Xiang, et al., 2024). The observed increase in R2R3-
Myb14 abundance in megagamethophyte during sil-
ver fir seed stratification suggests its potential role 
in enhancing transcriptional activity for dormancy 
breaking and germination (Fig.  3B, Table S3). The 
involvement of R2R3-Myb14 in dormancy release, 
rather than maintenance, has also been reported in 
other species (Himi et al., 2012; Nagel et al., 2019; 
Lang et al., 2021; Zhang et al., 2022).

Histone deacetylase complex subunit SAP30/
SAP30-like (HDAC, spot 245; Fig. 3A, Table S2) is 
an enzyme that deacetylates lysin residues of histone 
and other proteins (Loidl, 2004). This deacetylation 
leads to chromatin condensation and transcriptional 
repression (Hollender & Liu, 2008). HDAC plays crit-
ical roles in plant defence, adaptation, and develop-
ment, including seed dormancy breaking and germi-
nation (Tai et al., 2005; Wang et al., 2013; Pagano et 
al., 2019; Zheng et al., 2022). Suppression of HDAC 
activity using trichostatin A increases global histone 
acetylation and inhibits seed germination (Zhang et 
al., 2011). The balance between acetyltransferases 
(HATs) and HDACs affects the acetylation of the vi-
viparous1 (VP1), with ABA activating its transcrip-
tion through the aggregation of acetylated histone 
H3 at the promoter region during seed germination. 
In Arabidopsis, the acetylases HD2A and HD2C play 

antagonistic roles in germination, with HD2A re-
straining and HD2C enhancing the process (Colville 
et al., 2011). Van Zanten et al. (2014) demonstrat-
ed that histone deacetylase HDA9 negatively regu-
lates germination. HDA9 transcripts are abundant 
in dry seeds, but decrease during germination. Fur-
thermore, HD2A and HD2B deacetylate the DOG1 
locus, repressing its expression, thereby reducing 
seed dormancy and promoting germination (Han et 
al., 2023). In silver fir, HDAC abundance was high-
est in embryo of dormant seeds (Fig. 3A, Table S2), 
suggesting an inhibitory effect on gene transcription 
during dormancy.

Peptide-N4-(N-acetyl-beta-glucosaminyl)aspar-
agine amidase A (PNGase A, spot 884; Fig.  3, Ta-
ble S2 and S3) is enzyme responsible for protein 
post-translational de-N-glycosylation that regulates 
protein activity (Berger et al., 1996). During seed 
germination, numerous temporally regulated mor-
phological and biochemical processes depend on 
protein regulation. PNGase activity has been studied 
in a few species, with an increase observed during 
seed germination (Berger et al., 1996; Chang et al., 
2000; Vuylsteker et al., 2000). Additionally, released 
N-glycans, or free oligosaccharides, have been shown 
to act as growth-triggering factors (Maeda & Kimura, 
2014; Yamamoto et al., 2021). In silver fir, PNGase 
A abundance increased during dormancy breaking in 
both the embryo and the megagametophyte, thought 
it decreased in the embryo of germinated seeds 
(Fig. 3, Table S2 and S3). Its role is likely associated 
with the developmental transition from dormancy to 
germination, potentially through the modification of 
protein function or the involvement of N-glycans.

Heavy metal-associated isoprenylated plant pro-
tein 30-like (HIPP, spot 16; Fig.  3B, Table S3) is 
metallochaperone that contains a metal binding do-
main (HMA) and a C-terminal isoprenylation motif, 
which facilitates post-translational lipid modification 
of proteins (de Abreu-Neto et al., 2013). HIPPs are 
implicated in heavy metal homeostasis, detoxifica-
tion mechanisms, cold and drought responses, and 
plant-pathogen interactions (de Abreu-Neto et al., 
2013). Additionally, HIPPs are potential components 
of signalling pathways involved in the regulation of 
plasmodesmata (Barr et al., 2023). Overexpression 
of HIPP16 from Prunus avium has been shown to en-
hance low-temperature tolerance by increasing ger-
mination rate, antioxidant enzyme activity, and con-
centrations of osmoregulators in transgenic plants 
(Yu et al., 2024). The increased abundance of HIPP in 
silver fir megagametophyte during cold stratification 
(Fig. 3B, Table S3) likely reflects its role in defence 
against biotic stress accompanying dormancy break-
ing and germination.

Ricin B-like lectin R40C1 (spots 266 and 600; 
Fig.  3, Table S2 and S3) showed a decrease in 
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abundance in silver fir embryo axes and an increase 
in the megagametophyte during dormancy breaking 
and germination. Ricin B-like lectins are a family of 
carbohydrate-binding proteins structurally and func-
tionally associated with the ricin B-chain found in the 
plant toxin ricin (Damme et al., 1998). These pro-
teins are homologues of toxic N-glycosidase enzymes 
and ribosome-inactivating proteins, widely distribut-
ed in the majority of plant species and in different or-
gans to protect against fungal or viral infections (Liu 
et al., 2022). The role of ricin B-like lectin R40C1 is 
likely linked to biotic defence mechanisms during the 
juvenile stage of plant development, particularly in 
the organs containing storage materials.

Conclusions

This study advances knowledge of the seed biolo-
gy of gymnosperms by identifying proteins, and pre-
dicting metabolic pathways and molecular processes 
involved in the control of seed dormancy breaking 
and germination. Through a proteome analyses, our 
study enhances the understanding of seed physiolog-
ical dormancy, addressing existing gaps in the liter-
ature on seed dormancy and germination of gymno-
sperm species.

Our findings can find practical applications, po-
tentially improving the efficiency of seedling produc-
tion through a mechanistic understanding of seed 
physiological dormancy, which is a barrier to germi-
nation. Furthermore, this study establishes a foun-
dation for future research by offering a dataset that 
can be further refined and expanded, for example, 
through individual gene expression analysis.

Future studies may build upon this work by ex-
ploring interactions between environmental factors 
and gene regulation, including signal perception and 
transduction, gene expression modulation and me-
tabolite changes. Additionally, integrating proteom-
ics and ecophysiological approaches could provide a 
more comprehensive understanding of the earliest 
stages plant development.
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