

2025, vol. 94, 115–125

https://doi.org/10.12657/denbio.094.008

Sebastián Emilio Díaz-C.*, Esperanza N. Pulido-Rodríguez, Merly Y. Carreño-Díaz, Ana M. Aldana, René López-Camacho

Functional patterns of wood traits in Terra Firme and Igapó (tropical moist forests), Colombian Orinoquia

Received: 21 March 2025; Accepted: 8 October 2025

Abstract: Wood anatomical traits, considered hard traits, are ecologically relevant due to their relationship with the function of aboveground biomass storage in trees. In contrasting soil conditions, these traits can enhance our understanding of the role of species in ecosystem processes. We compared tree vegetation in Terra firme and Igapó within the tropical moist gallery forest of the Colombian Orinoquia, focusing on wood traits. Data were processed from five permanent monitoring plots, three in Terra firme and two in Igapó. We mounted tissue slices from wood cores to measure functional traits. We identified three functional types of trees with two strategies: conservatives and intermediate conservatives (characterized by hydraulic safety and fiber investment), and intermediate acquisitive (characterized by hydraulic efficiency and storage). In Terra fime, we recognized a functional type corresponding to palms (fiber investment and storage). Three trade-offs were observed in both forests: fiber traits vs. parenchymatic traits; fiber investment vs. storage, and hydraulic efficiency vs. hydraulic safety. We found a wide range of trait values within the same wood density range. Terra firme and Igapó forests exhibited similar functional patterns.

Keywords: wood anatomical traits, plant functional types, tree community ecology

Addresses: S. E. Díaz-C, Department of Marine, Earth, and Atmospheric Sciences; North Carolina State University; Raleigh, North Carolina, USA; https://orcid.org/0000-0002-7387-5073, e-mail: sdiazco@ncsu.edu;

Esperanza N. Pulido-Rodríguez Forest Engineering Program, Faculty of Environment and Natural Resources, Universidad Distrital "Francisco José de Caldas", Bogotá D.C., Colombia; https://orcid.org/0000-0003-1670-446X, e-mail: enpulidor@udistrital.edu.co;

M. Y. Carreño-Díaz, Independent Researcher, Bogotá D.C., Colombia; e-mail: yura.ny@hotmail.com; Ana M. Aldana, Laboratory of Tropical Forest Ecology and Primatology, Universidad de los Andes, Bogotá D.C., Colombia; https://orcid.org/0000-0003-3439-6245, e-mail: anaaldanaser@gmail.com; R. López-Camacho, Research Group of Use and Conservation of Forest Diversity, Universidad Distrital "Francisco José de Caldas", Bogotá D.C., Colombia; https://orcid.org/0000-0003-2026-0371, e-mail: rlopezc@udistrital.edu.co

^{*} corresponding author

Introduction

Plant functional traits are associated with ecosystem functioning (Díaz & Cabido, 2001). The trait values of species within a plant community are linked to their potential to generate ecosystem services (Tilman, 2001). For this reason, understanding how plants respond to ecological conditions and influence ecosystem processes is essential for recognizing their impact on aboveground biomass stocks and productivity (Shen et al., 2016). Stem traits have been used to explain shifts in aboveground biomass in trees (Baker et al., 2004), with wood density being the most significant trait (Baker et al., 2009). However, wood density is considered a soft trait influenced by hard traits (Marchand, 2022) related to wood anatomical traits. For instance, higher wood density correlates with lower vessel diameter (Preston et al., 2006) and axial parenchyma (Zheng & Martínez-Cabrera, 2013), and greater fiber wall thickness (Fortunel et al., 2014). Additionally, wood density exhibits varying trends depending on soil nutrients availability: higher soil fertility is associated with lower wood density (Castro et al., 2017).

On the other hand, functional balance of a community leads species to form groups that integrate different traits to coexist, clustering into plant functional types - PFT - (Walker, 1992). In this process, some clusters develop certain traits while others do not, a phenomenon known as a trade-off (Roscher et al., 2012). Trade-offs in wood traits show clear patterns under local conditions (Pulido-Rodriguez et al., 2019) but remain ambiguous for global trends (Gleason et al., 2016). Understanding these trends is essential for interpreting acquisitive and conservative strategies (Maynard et al., 2022). This is particularly important in tree vegetation gradients, such as soils under flooding conditions, where contrasting eco-physiological responses to ecosystem processes may occur (Lourenço et al., 2022).

In this context, this research aimed to compare the functional patterns of tree vegetation in tropical moist forests of Terra firme and Igapó in the Colombian Orinoquia, focusing on wood traits. To achieve this, we characterized wood traits and trade-offs, identified clustering patterns and functional strategies, and examined relationships between wood traits and wood density. Our first hypothesis posits that wood traits exhibit the fiber-parenchyma tradeoff (Janssen et al., 2020). The second hypothesis suggests the presence of more than two functional types (Kunstler et al., 2016), displaying acquisitive, conservative, and intermediate strategies (Lohbeck et al., 2015). Finally, we hypothesize a directly proportional relationship between wood density and wood traits, mainly fiber traits (Ziemińska et al., 2013, 2015).

Methods

The study area includes five permanent monitoring plots analyzed by González-Abella et al. (2021) in the Tomo Grande Reserve (Vichada Department, Tomo River). Two forest types are present in this area: Terra firme and Igapó. The locations of the plots are shown in Table 1. Terra firme forests are unflooded areas crisscrossed with riparian vegetation (Fig. S1), characterized by kaolinitic clays with lower ionic activity (Pitman et al., 2001), while Igapó forests are floodplain areas (Fig. S3) subject to seasonal flooding by rivers influenced by the presence of leaf litter (Lobo et al., 2019). According to Holdridge's (1967) classification, the life zone corresponds to a tropical moist forest. We selected tree species that accounted for 70% of the aboveground biomass and extracted wood cores from 23 dominant species in Terra firme (Table S1, Table S5, Table S6) and 9 in Igapó (Table S2, Table S7), using Chave's (2006) parameters and a Haglöf increment borer: extraction at 1.3 m, a depth of 10 cm, and a diameter of 5.15 mm. These cores were used to measure wood density (Williamson & Wiemann, 2010) and prepare microscopic slides for wood anatomy analysis. The laboratory phase was conducted at the Timber Lab "Jose Anatolio Lastra Rivera" and the Forest Herbarium "Gilberto Emilio Mahecha Vega" of the District University of Bogotá. We used a "RM2255" rotary microtome, an "AxioStar Plus" trinocular microscope with an "AxioCam ERC5S" camera, and a "Discovery V12" stereoscope with an "AxioCam ICc5" camera.

We prepared the samples from May of 2021 to April of 2022 according to the IAWA Committee methods (Alfonso et al., 1989), cutting them into transverse, tangential, and radial sections for each species. Microtome cuts were made at intervals ranging from twelve to forty micrometers, considering that some species have high wood density (> 0.6 g cm⁻³), using parts from the sapwood (Pande, 2013). Nevertheless, some samples were thick or contained imperfections due to the angle of the cut. Microscopy mounting was made using Canada balsam. Photographs were taken at 5x magnification to generate images of 1 mm². We performed macerations to obtain fiber cells following the method of Jansen et al. (1998). Small wood pieces were cut from the cores along the fiber direction and placed in a 1:1 solution of glacial acetic acid (CH₂CO₂H) and hydrogen peroxide (H_2O_2) . The solution was heated in test tubes at 60 °C for 24 hours, and the precipitate was washed with 50% ethanol. We then stained the samples with safranin for 48 hours, to complete the process even for some species with low content of lignin (Bond et al., 2008) and mounted them on microscope slides. For fiber length, we made temporary mountings using glycerol. Images of 2 mm² were captured at 70× magnification using the stereoscope to identify morphological structures in palms. We employed Zen Lite software version 2.5 (blue edition) to record photos and generate scales. We measured the wood traits shown in Table 2 using ImageJ software (Rueden et al., 2017) version 1.52r. Although inter-vessel pits were measured, we did not include them as a hydraulic trait because determining this requires the membrane width (Wheeler et al., 2005;

Sperry & Hacke, 2004), which could not be obtained due to the lack of an electron microscope in the laboratory. Finally, we transformed the vessel grouping into a qualitative variable using the clustering index for vessels proposed by Scholz et al. (2013). The following categories were determined: null, very low, low, medium low, medium, medium high, high, very high, and dominant. These categories correspond to variations of 12.5% in the index (Table S3).

Table 1. Plots, species, and acronyms

Plot Location	Family	Species	Author	Acronym
Terra Firme, Plot 1. 4.839N, -70.272W	Bignoniaceae	Jacaranda copaia	(Aubl.) D. Don	Jc1
	Areceaceae	Attalea maripa	(Aubl.) Mart.	Am1
	Goupiaceae	Goupia glabra	Aubl.	Gg1
	Burseraceae	Protium stevensonii	(Standl.) Daly	Pst1
	Vochysiaceae	Erisma calcaratum	(Link) Warm.	Ec1
	Sapotaceae	Pouteria multiflora	(A. DC.) Eyma	Pm1
	Apocynaceae	Aspidosperma excelsum	Benth.	Ae1
	Leguminosae	Enterolobium schomburgkii	(Benth.) Benth.	Es1
	Annonaceae	Bocageopsis multiflora	(Mart.) R.E. Fr.	Bm1
	Chrysobalanaceae	Moquilea subarachnophylla	(Cuatrec.) Sothers & Prance	Ms1
Terra Firme, Plot 2. 4.835N, -70.275W	Areceaceae	Attalea maripa	(Aubl.) Mart.	Am2
	Burseraceae	Protium stevensonii	(Standl.) Daly	Pst2
	Apocynaceae	Couma macrocarpa	Barb. Rodr.	Cm2
	Goupiaceae	Goupia glabra	Aubl.	Gg2
	Bignoniaceae	Jacaranda copaia	(Aubl.) D. Don	Jc2
	Areceaceae	Oenocarpus bataua	Mart.	Ob2
	Burseraceae	Trattinnickia lawrancei	Standl.	Tl2
	Sapotaceae	Pouteria multiflora	(A. DC.) Eyma	Pm2
	Chrysobalanaceae	Moquilea subarachnophylla	(Cuatrec.) Sothers & Prance	Ms2
	Areceaceae	Oenocarpus bacaba	Mart.	Obac2
	Malvaceae	Pachira speciosa	Triana & Planch.	Ps2
	Peraceae	Pera arborea	Mutis	Pa2
Terra Firme, Plot 3. 4.841N, -70.256W	Areceaceae	Oenocarpus bataua	Mart.	Ob3
	Areceaceae	Attalea maripa	(Aubl.) Mart.	Am3
	Bignoniaceae	Jacaranda copaia	(Aubl.) D. Don	Jc3
	Annonaceae	Guatteria foliosa	Benth.	Gf3
	Urticaceae	Pourouma minor	Benoist	Pmin3
	Euphorbiaceae	Alchornea triplinervia	(Spreng.) Müll. Arg.	At3
	Leguminosae	Abarema jupunba	(Willd.) Britton & Killip	Aj3
	Leguminosae	Stryphnodendron guianense	(Aubl.) Benth.	Sg3
	Araliaceae	Didymopanax morototoni	(Aubl.) Decne. & Planch.	Dmo3
	Annonaceae	Bocageopsis multiflora	(Mart.) R.E. Fr.	Bm3
	Apocynaceae	Himatanthus articulatus	(Vahl) Woodson	На3
gapó, Plot 4.4.823N, -70.263W	Leguminosae	Tachigali tinctoria	(Benth.) Zarucchi & Herend.	Tt4
0-1-7	Leguminosae	Tachigali vaupesiana	van der Werff	Tv4
	Leguminosae	Copaifera pubiflora	Benth.	Cp4
	Annonaceae	Guatteria blepharophylla	Mart.	Gb4
	Euphorbiaceae	Mabea trianae	Pax	Mt4
	Calophyllaceae	Caraipa llanorum	Cuatrec.	Cl4
gapó, Plot 5. 4.830N, -70.250W	Euphorbiaceae	Mabea trianae	Pax	Mt5
o-F -, - 100 01 1100011, 70120011	Chrysobalanaceae	Hymenopus heteromorphus	(Benth.) Sothers & Prance	Hh5
	Leguminosae	Tachigali tinctoria	(Benth.) Zarucchi & Herend.	Tt5
	Rubiaceae	Duroia micrantha	(Ladbr.) Zarucchi & J.H. Kirkbr.	Dm5
	Lecythidaceae	Eschweilera parvifolia	Mart. ex DC.	
	Calophyllaceae	Caraipa llanorum	Mart. ex DC. Cuatrec.	Ep5
	Leguminosae	-		Cl5
	Leguiiiiiosae	Tachigali vaupesiana	van der Werff	Tv5

	· · · · · · · · · · · · · · · · · · ·		,	
Section	Trait	Unit	Repetitions	References
Transverse	Vessel diameter	μm	100	
	Vessel density	# mm ⁻²	5	Scholz et al. (2013)
	Vessel grouping	Type	50	
	Metaphloem diameter*	μm	3	Thomas & de Franceschi (2013)
	Parenchyma type	Type	_	Alfonso et al. (1989)
	Axial parenchyma area	$\mu m2~mm^{-2}$	3	Charianal et al. (2021)
Fiber area		$\mu m2~mm^{-2}$	3	Slupianek et al. (2021)
	Fiber wall thickness	μm	50	Williams of all (2025) Calculated (2012)
Runkel ratio		Adimensional	50	Villareal et al. (2025), Scholz et al. (2013)
Tangential	Ray height	μm	25	
	Ray width	μm	25	
	Ray frequency	# mm ⁻¹	10	Alfonso et al. (1989)
	Contents	Type	_	

Туре

μm

Table 2. Functional traits, units and repetitions per species. Acronyms: *, palms

We identified plant functional types following a two-step process. First, we conducted a mixed discriminant analysis (Hastie & Tibshirani, 1996) supported by ellipses generated from a normal multivariate distribution at a 99% significance level (Fox & Weisberg, 2011), to recognize functional patterns for palms and trees. Second, we delineated tree functional types using a hierarchical cluster analysis with Ward's method (Ward, 1963) and Euclidean metrics (Elmore & Richman, 2001). We validated the number of groups through repeated results from several clustering indices (Charrad et al., 2014), with Marriot's, Ball's, and Trace's indices indicating an optimum of three clusters. We cut the cladograms at a height of 3.5 for Igapó and 2.2 for Terra firme. A permutational multivariate analysis of variance (Anderson, 2001) and the orthogonal contrast method (Nogueira, 2004), as a post-hoc test, were performed to identify significant differences among the plant functional types. Finally, we associated plant functional types with the functional strategies representative of their species: acquisitive, conservative, and intermediate (Lohbeck et al., 2015). A factor analysis of mixed data was performed to identify trade-off trends (Pagès, 2004), and it was complemented with Spearman

Macerations Tracheid presence

Fiber length

coefficients to estimate correlations (Liu et al., 2018). On the other hand, we performed linear regressions on quantitative traits to identify trends in relation to wood density, implementing the least square method. Additionally, we used the Wilcoxon test to evaluate significant differences between Terra firme and Igapó forests (Ruxton, 2006). We used R to process data (Venables et al., 2024). The following libraries were employed: FactoMineR (Husson et al., 2020), NbClust (Charrad et al., 2015), factoextra (Kassambara & Mundt, 2020), mda (Hastie et al., 2020), ggplot2 (Wickham et al., 2025), and PERMANOVA (Vicente-Gonzalez & Vicente-Villardon, 2021).

Scholz et al. (2013)

Results

Wood traits of tree species in Terra firme and Igapó fell within similar ranges. However, significant differences were observed in fiber (length and thickness) and ray (width and frequency) traits (Table 3). We excluded palms from trees as a plant functional type (PFT) in Terra firme through discriminant mixed analysis (Fig. 1), which explained 39.2% of the variance and showed no overlap between ellipses. The

Table 3. Wilcoxon test for wood traits of dominant species in tropical moist forests of Terra firme and Igapó. Values correspond to means and standard deviations. Acronyms: * $-\alpha < 0.1$; ** $-\alpha < 0.05$; *** $-\alpha < 0.01$

Trait	Igapó	Terra Firme	p-value
Fiber length (µm)	629.04 ± 77.95	719.67 ± 104.14	0.007***
Fiber wall thickness (μm)	2.79 ± 1.40	3.24 ± 0.92	0.016**
Ray height (μm)	220.20 ± 90.08	302.39 ± 193.46	0.218
Ray width (μm)	19.59 ± 21.36	26.84 ± 17.74	0.021**
Ray frequency (# mm ⁻¹)	18.38 ± 8.63	13.67 ± 7.88	0.087*
Vessel density (# mm ⁻²)	23.00 ± 13.04	19.85 ± 16.70	0.144
Vessel diameter (µm)	77.01 ± 13.95	92.78 ± 34.28	0.133
Runkel ratio	0.78 ± 0.40	0.77 ± 0.45	0.850
Fiber area (µm2 mm ⁻²)	816522.00 ± 77669.28	822486.81 ± 102707.07	0.512
Axial parenchyma area (μm2 mm ⁻²)	97817.18 ± 55518.82	75309.77 ± 68837.13	0.107

strategy of palms was focused on storage and tissue investment, as indicated by high values of parenchyma and fiber traits. Tree species exhibited clustering functional patterns that were consistent with plant functional types in both forests, resulting in three PFTs (Fig. 2, Fig. 3) significantly different (Table S4) and three functional strategies. Intermediate acquisitive PFTs displayed aliform parenchyma, longer fibers, larger vessel diameters, and lower values of wood density. Intermediate conservative PFTs were characterized by banded parenchyma, high values of height and width of rays, high values of vessel density, and intermediate values of wood density. Conservative PFTs were defined by low values of fiber length and thickness, high values of ray frequency, diffuse parenchyma, and higher values of wood density; in some species, tracheids were present, though more common in Igapó than in Terra firme. Trade-offs between hydraulic efficiency and safety paralleled the balance between storage in parenchyma and fiber investment (Table 4, Table 5). From intermediate acquisitive to

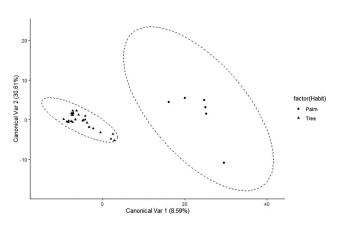


Fig. 1. Mixed discriminant analysis in Terra firme forests

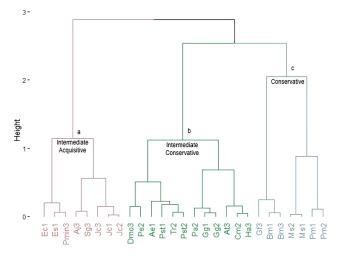


Fig. 2. Cluster dendrogram for PFTs in Terra firme forests. Shifts in letters (a, b, c) indicate significant differences (α < 0.01)

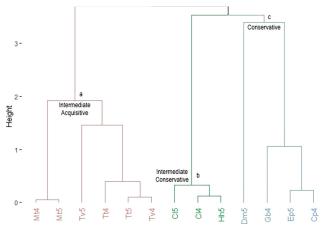


Fig. 3. Cluster dendrogram for PFTs in Igapó forests. Shifts in letters (a, b, c) indicate significant differences ($\alpha < 0.05$)

Table 4. Trade-offs correlations for wood traits in Terra Firme. Absolute values for interpreting correlation coefficients: 0–0.2, very low; 0.2–0.4, low; 0.4–0.6, medium; 0.6–0.8, high; 0.8–1, very high. Acronyms: * – α < 0.1; ** – α < 0.05; *** – α < 0.01

	Fiber length	Fiber wall thickness	Ray height	Ray width	Ray frequency	Vessel density	Vessel diameter	Runkel ratio	Fiber area	Parenchyma area	Wood density
Fiber length	1	0.709***	0.515***	-0.190	0.437**	0.031	-0.064	0.312	0.162	-0.125	0.163
Fiber wall thickness		1	0.413**	0.073	0.139	-0.023	0.023	0.485**	0.209	-0.296	-0.043
Ray height			1	0.395**	-0.151	-0.240	0.151	0.095	-0.330*	-0.011	-0.063
Ray width				1	-0.758***	-0.120	0.083	-0.005	-0.400**	-0.157	-0.156
Ray frequency					1	0.040	-0.113	0.139	0.524***	0.001	0.086
Vessel density						1	-0.900***	0.215	0.271	-0.481**	0.436**
Vessel diameter							1	-0.255	-0.264	0.404**	-0.341
Runkel ratio								1	-0.224	0.019	0.423**
Fiber area									1	-0.623***	-0.189
Parenchyma area										1	0.079
Wood density											1

Table 5. Trade-offs correlations for wood traits in Igapó. Absolute values for interpreting correlation coefficients: 0–0.2, very low; 0.2–0.4, low; 0.4–0.6, medium; 0.6–0.8, high; 0.8–1, very high. Acronyms: * $-\alpha < 0.1$; ** $-\alpha < 0.05$; *** $-\alpha < 0.01$

	Fiber length	Fiber wall thickness	Ray height	Ray width	Ray frequency	Vessel density	Vessel diameter	Runkel ratio	Fiber area	Parenchyma area	Wood density
Fiber length	1	0.388	0.615**	0.496*	0.121	-0.179	-0.027	0.070	-0.379	0.220	-0.374
Fiber wall thickness		1	0.482*	0.269	0.369	0.259	-0.235	0.186	0.357	-0.454	-0.078
Ray height			1	0.518	0.256	-0.121	-0.385	-0.118	-0.077	-0.016	-0.456
Ray width				1	-0.334	-0.314	-0.369	-0.018	-0.223	0.320	0.025
Ray frequency					1	0.338	-0.234	0.445	0.569**	-0.704***	-0.146
Vessel density						1	-0.342	-0.034	0.234	-0.441	0.110
Vessel diameter							1	-0.115	-0.181	0.082	-0.269
Runkel ratio								1	0.333	-0.319	0.411
Fiber area									1	-0.852***	-0.071
Parenchyma area										1	0.258
Wood density											1

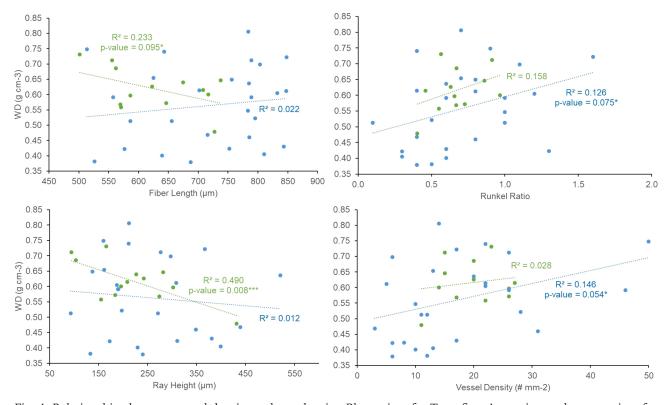


Fig. 4. Relationships between wood density and wood traits. Blue points for Terra firme's species, and green points for Igapó's species. Acronyms: WD, wood density; * $-\alpha < 0.1$; ** $-\alpha < 0.05$; *** $-\alpha < 0.01$

conservative species, trends included increasing axial parenchyma area and decreasing Runkel ratio in fibers (Fig. S2, Fig. S4). Wood-trait trends with respect to wood density were similar in both Terra firme and Igapó forests (Fig. 4). In Igapo, longer fibers and rays were marginally associated with lower wood density ($\alpha < 0.1$); while in Terra firme, higher values of Runkel ratio and vessel density were marginally associated with higher wood density ($\alpha < 0.1$). Notably, a

wide range of wood-trait values occurred within the same range of wood density.

Discussion

Functional patterns of clustering, strategies and trait trade-offs were similar in Igapó and Terra firme forests in this study, despite significant differences in composition (richness) and structure (trees per hectare) reported by Díaz-C. et al. (2022). Two main ecological statements could explain this behavior. The first is the principle of phylogenetic conservatism (Pyron et al., 2015), which suggests that traits of taxa from the same phylogeny form plant functional types. This principle is supported by our study, as the results for wood traits align with values reported by Macedo et al. (2014) for Tachigali, Moutinho et al. (2012) for Eschweilera, Koek-Noorman and Westra (2012) for Guatteria, Jansen et al. (2002) for Duroia, and Thomas and Boura (2015) for the subfamily Arecoideae. However, a few species fell outside the PFTs associated with their taxonomic family. For example, Copaifera pubiflora Benth. differed from the Tachigali spp. group in ray height, ray width, and axial parenchyma type. Likewise, Aspidosperma excelsum Benth. differed from the group of Couma macrocarpa Barb. Rodr. and Himatanthus articulatus (Vahl) Woodson in vessel diameter and density. The second is the eco-physiological adaptation-to-flooding hypothesis (Parolin et al., 2004), which indicates similarities for species' physiology between Terra firme and flooded forests. This hypothesis is supported by our research, as we found the same quantity and functional strategies for PFTs in Igapó and Terra firme. For instance, intermediate acquisitive strategy includes species similar to those reported by Chazdon et al. (2010) in Costa Rica. The intermediate conservative and conservative strategies include taxa comparable to those reported by Fortunel et al. (2014) in French Guyana. The PFT for palms was an exception in Terra firme, as it was related to investment in height through fiber traits, consistent with findings by Rich (1987) in neotropical palms.

Regarding trade-offs, the shift from hydraulic safety to efficiency (Chen et al., 2025) was parallel to fiber-parenchyma investment (Janssen et al., 2020) in both forests (Méndez-Alonzo et al., 2012). Similarly, the community variance for fiber and hydraulic traits was lower than for parenchyma traits in Terra firme and Igapó, even though parenchyma fractions vary with soil nutrient availability (Morris et al., 2016). These results support our hypothesis of parenchyma-fiber trade-offs (Pratt et al., 2021). On the other hand, wood traits showed similar trends with respect to wood density in Terra firme and Igapó. Nevertheless, our hypothesis that higher fiber traits values correspond to higher wood density was partially supported, as this pattern was observed solely for the Runkel ratio in Terra firme. This result is consistent with the findings reported by Martínez-Cabrera et al. (2012). Furthermore, the fiber wall thickness values obtained in both forests fell within the ranges reported by Alvarado and Terrazas (2023). In contrast, fiber length exhibited a weak inversely proportional trend, with lower values being associated with conservative species (Kiaei & Samariha, 2011). Likewise, vessel density was higher for this PFT, which is characterized by a hydraulic safety strategy (Martínez-Cabrera et al., 2011).

It is important to note that these patterns between wood traits and wood density are valuable for analyzing shifts in aboveground biomass, given the role of wood density in this ecosystem function (Poorter et al., 2017). We think that soft traits, such as fibers, can enhance the understanding of functional tree ecology and the interpretation of plant functional types and their strategies. Additionally, we demonstrated that different values for wood traits can exist within the same range for wood density, indicating a degree of plasticity in a hard trait that has been prioritized as an indicator of functional recovery in tropical forest ecology (Poorter et al., 2021). Therefore, we recommend including wood anatomical traits in future research. This information can be applied to species selection for forest restoration, helping to identify acquisitive and conservative strategies (Zuidema & Lohbeck, 2025). We acknowledge, however, that preparing mountings from increment borer cores is challenging, even with rotary microtomes. Difficulties in controlling the angle of the blade when cutting slices can affect samples and image quality. Nevertheless, this is not a limiting factor for the final measurements, as the flexibility of the software and the experience in trait recognition allow for reliable results. Finally, we highlight that this research addresses a significant knowledge gap concerning palm traits, an ecological component that has not been thoroughly explored in forests and can substantially contribute to the development of functional ecology (Trujillo et al., 2021) in regions where such studies are uncommon.

Acknowledgements

We thank Timber Lab and Forest Herbarium of the District University of Bogota for facilitating the instruments and spaces. Los Andes University's ecology and primatology lab, particularly Luisa Fernanda Casas, Diego Correa and Pablo Stevenson provided us with taxonomic identity databases. We recognize the help in the field from local experts of Tomo Grande reserve. Alejandro Angel Escobar foundation funded this research. Finally, we express our gratitude to the editorial board and the anonymous reviewers for their contributions during the evaluation process.

References

Alfonso VA, Baas P, Carlquist S, Chimelo JP, Rauber-Coradin VT, Détienne P, Gasson PE, Grosser D, Illic J, Kuroda K, Miller RB, Ogata K, Richter

- HG, ter Welle BJ & Wheeler EA (1989) IAWA list of microscopic features for hardwood identification with an Appendix on non-anatomical information. IAWA Bulletin 10: 219–332. doi:10.1163/22941932-90000496.
- Alvarado MV & Terrazas T (2023) Tree species differ in plant economic spectrum traits in the tropical dry forest of Mexico. PLoS ONE 18: e0293430. doi:10.1371/journal.pone.0293430.
- Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x.
- Baker T, Phillips O, Malhi Y, Almeidas S, Arroyo L, di Fiore A, Erwin T, Killeen T, Laurence S, Laurance W, Lewis S, Lloyd J, Monteagudo A, Neill D, Patiño S, Pitman N, Silva J & Vásquez-Martínez R (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545–562. doi:10.1111/j.1365-2486.2004.00751.x.
- Baker T, Phillips O, Laurance WF, Pitman NCA, Almeida S, Arroyo L, DiFiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Nascimento H, Monteagudo A, Neill DA, Silva JNM, Malhi Y, Gonzalez GL, Peacock J, Quesada CA, Lewis SL & Lloyd J (2009) Do species traits determine patterns of wood production in Amazonian forests? Biogeosciences 6: 297–307. doi:10.5194/bg-6-297-2009.
- Bond J, Donaldson L, Hill S & Hitchcock K (2008) Safranine fluorescent staining of wood cell walls. Biotechnic & Histochemistry 83: 161–171. doi:10.1080/10520290802373354.
- Castro VR, Surdi PG, Sette-Junior CR, Filho MT, Chaix G & Laclau JP (2017) Efeito da aplicação do potássio, do sódio e da disponibilidade hídrica na densidade aparente a 12% de umidade do lenho juvenil de árvores de *Eucalyptus grandis*. Ciência Florestal 27: 1017–1027. doi:10.5902/1980509828675.
- Charrad M, Ghazzali N, Boiteau V & Niknafs A (2014) NbClust: An R Package for determining the relevant number of clusters in a data set. Journal of Statistical Software 61: 1–36. doi:10.18637/jss.v061.i06.
- Charrad M, Ghazzali N, Boiteau V & Niknafs A (2015) NbClust: Determining the best number of clusters in a data set. R Package Version 3.0.
- Chave J (2006) Measuring wood density for tropical forest trees: a field manual. Project for the advancement of networked science in Amazonia, Toulouse, France.
- Chazdon RL, Finegan B, Capers RS, Salgado-Negret B, Casanoves F, Boukili V & Norden N (2010) Composition and dynamics of functional groups of trees during tropical forest succession in northeastern Costa Rica: functional groups of

- trees. Biotropica 42: 31–40. doi:10.1111/j.1744-7429.2009.00566.x.
- Chen X, Li J, Niklas KJ, Penuelas J, Hu D, Zhong Q & Cheng D (2025) Universal trade-off between vessel size and number and its implications for plant hydraulic function. Oecologia 207: 161. doi:10.1007/s00442-025-05801-5.
- Díaz S & Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16: 646–655. doi:10.1016/S0169-5347(01)02283-2.
- Díaz-C SE, Aldana AM & López-Camacho R (2022) Functional analysis of wood traits and aboveground biomass in tropical moist forests from the Colombian Orinoquia (master's dissertation). District University of Bogota, Bogota, Colombia.
- Elmore KL & Richman MB (2001) Euclidean distance as a similarity metric for principal component analysis. Monthly Weather Review 129: 540–549. doi:10.1175/1520-0493 (2001) 129<05 40:EDAASM>2.0.CO;2.
- Fortunel C, Ruelle J, Beauchene J, Fine PVA & Baraloto C (2014) Wood specific gravity of branches and roots in 113 Amazonian rainforest tree species across environmental gradients. New Phytologist 202: 79–94. doi:10.1111/nph.12632.
- Fox J & Weisberg S (2011) An R companion to applied regression. Sage, California, United States.
- Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao K, Cochard H, Delzon S, Domec J, Fan Z, Feild TS, Jacobsen AL, Johnson DM, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, McCulloh KA, Mencuccini M, Mitchell PJ, Morris H, Nardini A, Pittermann J, Plavcová L, Schreiber SG, Sperry JS, Wright IJ & Zanne AE (2016) Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. New Phytologist 209: 123–136. doi:10.1111/nph.13646.
- González-Abella JS, Aldana AM, Correa DF, Casas LF & Stevenson PR (2021) Forest structure, diversity, and dynamics in terra firme and igapó gallery forests in the Colombian Orinoco basin. Forests 12: 1568. doi:10.3390/f12111568.
- Hastie T & Tibshirani R (1996) Discriminant analysis by gaussian mixtures. Journal of the Royal Statistical Society: Series B 58: 155–176. doi:10.1111/j.2517-6161.1996.tb02073.x.
- Hastie T, Leisch F, Hornik K, Ripley BD, Narasimham B & Tibshirani R (2020) mda: Mixture and flexible discriminant analysis. R Package Version 0.5-2.
- Holdridge LR (1967) Life zone ecology. Tropical science center, San José, Costa Rica.

- Husson F, Josse J, Le S & Mazet J (2020) FactoMineR: Multivariate exploratory data analysis and data mining. R Package Version 2.4.
- Jansen S, Kitin P, de Pauw H, Idris M, Beeckman H & Smets E (1998) Preparation of wood specimens for transmitted light microscopy and scanning electron microscopy. Belgian Journal of Botany 131: 41–49.
- Jansen S, Robbrecht E, Beeckman H & Smets E (2002) A survey of the systematic wood anatomy of the Rubiaceae. IAWA Journal 23: 1–67. doi:10.1163/22941932-90000288.
- Janssen TAJ, Hölttä T, Fleischer K, Naudts K & Dolman H (2020) Wood allocation trade-offs between fiber wall, fiber lumen and axial parenchyma drive drought resistance in neotropical trees. Plant, Cell, and Environment 43: 965–980. doi:10.1111/pce.13687.
- Kassambara A & Mundt F (2020) factoextra: Extract and visualize the results of multivariate data analyses. R Package Version 1.0.7.
- Kiaei M & Samariha A (2011) Fiber dimensions, physical and mechanical properties of five important hardwood plants. Indian Journal of Science Technology 4: 1460–1463. doi:10.17485/ijst/2011/v4i11.8.
- Koek-Noorman J & Westra LYT (2012) Macrophotographic wood atlas of Annonaceae: Wood anatomy of Annonaceae. Botanical Journal of the Linnean Society 169: 135–189. doi:10.1111/j.1095-8339.2012.01237.x.
- Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE & Westoby M (2016) Plant functional traits have globally consistent effects on competition. Nature 529: 204–207. doi:10.1038/nature16476.
- Liu Q, Li C, Wanga V & Shepherd BE (2018) Covariate-adjusted Spearman's rank correlation with probability-scale residuals: covariate-adjusted Spearman's rank correlation. Biometrics 74: 595–605. doi:10.1111/biom.12812.
- Lobo GS, Wittmann F & Piedade MTF (2019) Response of black-water floodplain (*igapó*) forests to flood pulse regulation in a dammed Amazonian river. Forest Ecology and Management 434: 110–118. doi:10.1016/j.foreco.2018.12.001.
- Lohbeck M, Lebrija-Torres E, Martínez-Ramos M, Meave JA, Poorter L & Bongers F (2015) Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their conse-

- quences for succession. PLoS One 10: e0123741. doi:10.1371/journal.pone.0123741.
- Lourenço J, Enquist BJ, von Arx G, Sonsin-Oliveira J, Morino K, Thomaz LD & Milanez CRD (2022) Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought. New Phytologist 234: 50–63. doi: doi:10.1111/nph.17944.
- Macedo TM, Barros CF, Lima HC & Costa CG (2014) Wood anatomy of seven species of *Tachigali* (Caesalpinioideae–Leguminosae). IAWA Journal 35: 19–30. doi:10.1163/22941932-00000044.
- Marchand W (2022) Using global databases to disentangle trait-specific and environmental influences on forest drought sensitivity. Global Change Biology 28: 3748–3749. doi:10.1111/gcb.16157.
- Martínez Cabrera HI, Estrada-Ruiz E, Castañeda Posadas C & Woodcock D (2012) Wood specific gravity estimation based on wood anatomical traits: Inference of key ecological characteristics in fossil assemblages. Review of Palaeobotany and Palynology 187: 1–10. doi:10.1016/j.revpalbo.2012.08.005.
- Martínez-Cabrera HI, Schenk HJ, Cevallos Ferriz SRS & Jones CS (2011) Integration of vessel traits, wood density, and height in angiosperm shrubs and trees. American Journal of Botany 98: 915–922. doi:10.3732/ajb.1000335.
- Maynard DS, Bialic-Murphy L, Zohner CM, Averill C, van den Hoogen J, Ma H, Mo L, Smith GR, Acosta ATR, Aubin I, Berenguer E, Boonman CCF, Catford JA, Cerabolini BEL, Dias AS, González-Melo A, Hietz P, Lusk CH, Mori AS, Niinemets Ü, Pillar VD, Pinho BX, Rosell JA, Schurr FM, Sheremetev SN, da Silva AC, Sosinski Ê, van Bodegom PM, Weiher E, Bönisch G, Kattge J & Crowther TW (2022) Global relationships in tree functional traits. Nature Communications 13: 3185. doi:10.1038/s41467-022-30888-2.
- Méndez-Alonzo R, Paz H, Zuluaga RC, Rosell JA & Olson ME (2012) Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology 93: 2397–2406. doi:10.1890/11-1213.1.
- Morris H, Plavcová L, Cvecko P, Fichtler E, Gillingham MAF, Martínez-Cabrera HI, McGlinn DJ, Wheeler E, Zheng J, Ziemińska K & Jansen S (2016) A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist 209: 1553–1565. doi:10.1111/nph.13737.
- Moutinho VHP, Lima JT, de Aguiar JOR & Nogueira MGO (2012) Scientific determination and wood anatomical features of species known in Brazilian Amazonia as matá-matá (*Eschweilera* spp.). Revista de Ciências Agrárias 55: 134–141. doi:10.4322/rca.2012.044.

- Nogueira MCS (2004) Orthogonal contrasts: definitions and concepts. Scientia Agricola 61: 118–124. doi:10.1590/S0103-90162004000100020.
- Pagès J (2004) Analyse factorielle de données mixtes. Revue de Statistique Appliquée 52: 93–111.
- Pande PK (2013) Influence of growth, wood anatomical properties and specific gravity on heartwood, sapwood and tension-wood in *Dalbergia sissoo* Roxb. Journal of the Indian Academy of Wood Science 10: 16–21. doi:10.1007/s13196-013-0087-6.
- Parolin P, de Simone O, Haase K, Waldhoff D, Rottenberger S, Kuhn U, Kesselmeier J, Kleiss B, Schmidt W, Piedade MTF & Junk WJ (2004) Central Amazonian floodplain forests: tree adaptations in a pulsing system. The Botanical Review 70: 357–380. doi:10.1663/0006-8101(2004)070[0357:-CAFFTA]2.0.CO;2.
- Pitman NCA, Terborgh JW, Silman MR, Núñez-V P, Neill DA, Cerón CE, Palacios WA & Aulestia M (2001) Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82: 2101–2117. doi:10.1890/0012-9658(2001)082[2101:DAD-OTS]2.0.CO;2.
- Poorter L, Craven D, Jakovac CC, van der Sande MT, Amissah L, Bongers F, Chazdon RL, Farrior CE, Kambach S, Meave JA, Muñoz R, Norden N, Rüger N, van Breugel M, Almeyda-Zambrano AM, Amani B, Andrade JL, Brancalion PHS, Broadbent EN, de Foresta H, Dent DH, Derroire G, DeWalt SJ, Dupuy JM, Durán SM, Fantini AC, Finegan B, Hernández-Jaramillo A, Hernández-Stefanoni JL, Hietz P, Junqueira AB, N'dja JK, Letcher SG, Lohbeck M, López-Camacho R, Martínez-Ramos M, Melo FPL, Mora F, Müller SC, N'Guessan AE, Oberleitner F, Ortiz-Malavassi E, Pérez-García EA, Pinho BX, Piotto D, Powers JS, Rodríguez-Buriticá S, Rozendaal DMA, Ruíz J, Tabarelli M, Teixeira HM, Valadares de Sá Barretto Sampaio E, van der Wal H, Villa PM, Fernandes GW, Santos BA, Aguilar-Cano J, de Almeida-Cortez JS, Alvarez-Davila E, Arreola-Villa F, Balvanera P, Becknell JM, Cabral GAL, Castellanos-Castro C, de Jong BHJ, Nieto JE, Espírito-Santo MM, Fandino MC, García H, García-Villalobos D, Hall JS, Idárraga A, Jiménez-Montoya J, Kennard D, Marín-Spiotta E, Mesquita R, Nunes YRF, Ochoa-Gaona S, Peña-Claros M, Pérez-Cárdenas N, Rodríguez-Velázquez J, Villanueva LS, Schwartz NB, Steininger MK, Veloso MDM, Vester HFM, Vieira ICG, Williamson GB, Zanini K & Hérault B (2021) Multidimensional tropical forest recovery. Science 374: 1370-1376. doi:10.1126/science.abh3629.
- Poorter L, van der Sande MT, Arets EJMM, Ascarrunz N, Enquist BJ, Finegan B, Licona JC, Martínez-Ramos M, Mazzei L, Meave JA, Muñoz R, Nytch CJ, de Oliveira AA, Pérez-García EA, Prado-Jun-

- ior J, Rodríguez-Velázques J, Ruschel AR, Salgado-Negret B, Schiavini I, Swenson NG, Tenorio EA, Thompson J, Toledo M, Uriarte M, Hout P, van der Zimmerman JK & Peña-Claros M (2017) Biodiversity and climate determine the functioning of Neotropical forests. Global Ecology and Biogeography 26: 1423–1434. doi:10.1111/geb.12668.
- Pratt RB, Jacobsen AL, Percolla MI, de Guzman ME, Traugh CA & Tobin MF (2021) Trade-offs among transport, support, and storage in xylem from shrubs in a semiarid chaparral environment tested with structural equation modeling. Proceedings of the National Academy of Sciences 118: e2104336118. doi:10.1073/pnas.2104336118.
- Preston KA, Cornwell WK & DeNoyer JL (2006) Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist 170: 807–818. doi:10.1111/j.1469-8137.2006.01712.x.
- Pulido-Rodríguez EN, López-Camacho R, Torres J, Velasco E & Salgado-Negret B (2019) Traits and trade-offs of wood anatomy between trunks and branches in tropical dry forest species. Trees 34: 497–505. doi:10.1007/s00468-019-01931-5.
- Pyron RA, Costa GC, Patten MA & Burbrink FT (2015) Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biological Reviews 90: 1248–1262. doi:10.1111/brv.12154.
- Rich P (1987) Developmental anatomy of the stem of *Welfia georgii, Iriartea gigantea* and other arborescent palms: implications for mechanical support. American Journal of Botany 74: 792–802. doi:10.1002/j.1537-2197.1987.tb08683.x.
- Roscher C, Schumacher J, Gubsch M, Lipowsky A, Weigelt A, Buchmann N, Schmid B & Schulze ED (2012) Using plant functional traits to explain diversity–productivity relationships. PLoS One 7: e36760. doi:10.1371/journal.pone.0036760.
- Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET & Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18: 529. doi:10.1186/s12859-017-1934-z.
- Ruxton GD (2006) The unequal variance t-test is an underused alternative to Student's *t*-test and the Mann–Whitney *U* test. Behavioral Ecology 17: 688–690. doi:10.1093/beheco/ark016.
- Scholz A, Klepsch M, Karimi Z & Jansen S (2013) How to quantify conduits in wood? Frontiers in Plant Science 4: 56. doi:10.3389/fpls.2013.00056.
- Shen Y, Yu S, Lian J, Shen H, Cao H, Lu H & Ye W (2016) Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest. Scientific Reports 6: 25304. doi:10.1038/srep25304.

- Slupianek A, Dolzblasz A & Sokolowska K (2021) Xylem parenchyma-role and relevance in wood functioning in trees. Plants 10: 1247. doi:10.3390/plants10061247.
- Sperry JS & Hacke UG (2004) Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes. American Journal of Botany 91: 369–385. doi:10.3732/ajb.91.3.369.
- Thomas R & Boura A (2015) Palm stem anatomy: phylogenetic or climatic signal? Botanical Journal of the Linnean Society 178: 467–488. doi:10.1111/boi.12274.
- Thomas R & de Franceschi D (2013) Palm stem anatomy and computer-aided identification: The Coryphoideae (Arecaceae). American Journal of Botany 100: 289–313. doi:10.3732/ajb.1200242.
- Tilman D (2001) Functional diversity. Encyclopedia of biodiversity 3: 109–121. doi:10.1006/rwbd.1999.0154.
- Trujillo W, Rivera-Rondon CA & Balslev H (2021) Palm functional traits, soil fertility and hydrology relationships in Western Amazonia. Frontiers in Forests and Global Change 4: 723553. doi:10.3389/ffgc.2021.723553.
- Venables WN, Smith DM & R Core Team (2024) An introduction to R: A programming environment for data analysis and graphics. R Foundation for Statistical Computing, Vienna, Austria.
- Vicente-González L & Vicente-Villardon JL (2021) PERMANOVA: Multivariate analysis of variance based on distances and permutations. R Package. Version 0.2.0.
- Villareal JF, Poclis CE, Barron MGB, Rivera RP & Marasigan OS (2025) Fiber morphology of *Syzygium tripinnatum* (Blanco) Merr. stemwood and branchwood and their derived values. Environment and Natural Resources Journal 23: 176–184. doi:10.32526/ennrj/23/20240245.

- Ward J (1963) Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58: 236–244. doi:10.2307/2282967.
- Wheeler JK, Sperry JS, Hacke UG & Hoang N (2005) Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell and Environment 28: 800–812. doi:10.1111/j.1365-3040.2005.01330.x.
- Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K, Yutani H, Dunnington D & van den Brand T (2025) ggplot2: Create elegant data visualizations using the grammar of graphics. R Package Version 3.5.2.
- Williamson G & Wiemann M (2010) Measuring wood specific gravity...Correctly. American Journal of Botany 97: 519–524. doi:10.3732/ajb.0900243.
- Zheng J & Martinez-Cabrera HI (2013) Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany 112: 927–935. doi:10.1093/aob/mct153.
- Ziemińska K, Butler DW, Gleason SM, Wright IJ & Westoby M (2013) Fiber wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants 5: plt046. doi:10.1093/aobpla/plt046.
- Ziemińska K, Westoby M & Wright IJ (2015) Broad anatomical variation within a narrow wood density range A study of twig wood across 69 Australian angiosperms. PLoS One 10: e0124892. doi:10.1371/journal.pone.0124892.
- Zuidema PA & Lohbeck M (2025) Which trees to use in forest restoration? Nature 640: 325–326. doi:10.1038/d41586-025-00802-z.