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Abstract: Spatial structure plays a vital role in forest operation, community dynamics, biodiversity con-
servation, and ecological functions, and it has been well documented at population, community, and re-
gional levels. However, most studies on spatial structure focus on tree attributes without considering the 
relationships among neighbors. Based on the position, species, and size of neighboring trees, forest spatial 
structure can be classified into distribution, mixture, and differentiation classes. We analyzed the spatial 
patterns of these types in a 6-ha old-growth forest plot in southern China using pair correlation functions, 
mark correlation functions, and mark variogram functions. The results revealed that: (1) The distribution 
classes primarily exhibited aggregated patterns, with random associations dominating their relationships; 
(2) The mingling classes also exhibited aggregation, with spatial associations shifting from attraction to 
repulsion as the mingling degree increased; (3) The spatial structure of the differentiation classes was pre-
dominantly characterized by aggregation and random association. Intraspecific aggregation and small-tree 
aggregation were common features across all structural types. These findings are well explained by forest 
ecology theories such as dispersal limitation, mingling-size hypothesis, and the Janzen–Connell hypothesis, 
suggesting that different tree groups play distinct roles in forest communities. This study enhances our 
understanding of spatial structure in natural forest ecosystems and contributes to the monitoring, assess-
ment, and management of forest resources.
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Introduction

Forests are three-dimensional physical organisms 
(Spies, 1998) with broad-ranging structures and 
multiple forms related to their species, individual 
size, abundance, and shape, as well as their configu-
ration in time and space (Hui et al., 2019; Dorji et al., 
2021; Remadevi et al., 2023). In terms of space, forest 

structure can be divided into vertical and horizontal 
components (Bohlman, 2015; Hui et al., 2019). And 
more and more studies from forest ecosystems em-
phasize the importance of spatial structure (McIntire 
& Fajardo, 2009; Hui et al., 2019; Li et al., 2022), 
as it is closely related to environmental conditions, 
resource availability (Martens et al., 2000; Lv et al., 
2023), biodiversity, productivity (Zhang et al., 2021), 
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community stability, stress resistance, and resiliency 
(Schneider et al., 2019; Zhang et al., 2021), reflecting 
the trend of community succession. Spatial structure 
is also the result of tree growth and its integrated re-
sponse to exogenous disturbances, such as drought. 
Thus, the spatial structure of a forest significantly 
affects forest management decision-making, guide-
lines, technology applications, and the evaluation of 
policy outcomes (Carrer et al., 2018).

A remarkable feature of spatial structure is the 
scale effect, the properties of which change contin-
uously depending on the observation scale. A large 
scale reflects the influence of habitat heterogeneity 
on the tree point pattern, dynamics and demograph-
ics of forest communities (Getzin et al., 2008; Shen 
et al., 2013), while a small scale is the main domain 
of tree interactions (Potvin & Dutilleul, 2009; Erfan-
ifard et al., 2018), including between individual trees 
and the environment, and often determines structural 
features that differ markedly from those observed at 
other scales, including species diversity, abundance, 
and microhabitat (Pinzon et al., 2018; Zhang et al., 
2021). Small-scale spatial structure and dynamics 
have become an important basis for understanding 
forest ecological processes such as regeneration, 
growth, competition, dependence, death, and de-
composition, as well as predicting the formation and 
maintenance mechanism of species diversity (Getzin 
et al., 2006). However, regardless of scale, most stud-
ies focus on spatial structures related to tree attrib-
utes, especially appearance characteristics, such as 
life stage, tree size, growth status, life form, species 
composition, and forest community type (Carrer et 
al., 2018; Engone Obiang et al., 2019; Bianchi et al., 
2021). The failure to consider relationships among 
trees has resulted in an inadequate understanding of 
forest spatial structure (Zhang et al., 2021).

According to our knowledge, the relationship of 
nearest neighbors can provide a new approach to the 

analysis of forest spatial structures. A forest can be 
considered as a collection composed of n structural 
units (Zhang et al., 2018; Zhang & Hui, 2021; Li et 
al., 2022). In a structural unit of four trees, species 
distribution pattern, species mixing and size differen-
tiation of adjacent trees j surrounding reference tree 
i are well described by a group of indices, including 
the uniform angle index (W), species mingling (M) 
and dominance (U) (Fig. A1). These parameters are 
independent of each other (Li et al., 2022; Remadevi 
et al., 2023), with the uniform expression and the 
exact same value hierarchy 0, 0.25, 0.50, 0.75, and 
1.0 (Kint et al., 2003; Zhang et al., 2019). Each value 
class has a clear biological significance and is easily 
recognizable in woodlands (Hui et al., 2019). Based 
on these characteristics, forest stands can be divided 
according to the distributions, mixing and size dif-
ferentiation of their tree groups, which define what 
“structural types” in this study. Among them, distri-
bution classes are composed of highly regular trees 
(HRT), regular trees (ReT), random trees (RaT), 
clumped trees (CT), and highly clumped trees (HCT) 
(Zhang et al., 2018). Mixture classes can be divided 
into null mixed (NMT), low mixed (LMT), medium 
mixed (MMT), high mixed (HMT), and completely 
mixed trees (CMT), and differentiation classes com-
prise dominant trees (DoT), sub-dominant trees 
(SDT), medium-sized trees (MST), weak trees (WT), 
and absolutely weak trees (AWT) (Li et al., 2020). 
The structural types are tree communities that are 
lower than the stand but higher than the single tree 
level (Table 1). To date, the properties of these struc-
tural types remain unknown.

The distribution pattern, spatial associations, and 
tree marks are the three most important aspects of 
forest spatial structure (Condit et al., 2000; McIntire 
& Fajardo, 2009; Birch et al., 2019). Since the ob-
jects included in the distribution class, the mixture 
class, and the differentiation class are different, we 

Table 1. Structural types based on the spatial relationships of nearest neighbors

Formulas Patterns Values Structural types References

W  =     ∑  Z ,i ijj=1

1
4

4

Z  = ij

1, if α  < α  = 72°j 0

0, otherwise{

4 αj ≥ α0

3 αj ≥ α0

2 αj ≥ α0

1 αj ≥ α0

0 αj ≥ α0

Wi = 0.00
Wi = 0.25
Wi = 0.50
Wi = 0.75
Wi = 1.00

highly regular tree
regular tree
random tree
clumped tree

highly clumped tree

HRT
ReT
RaT
CT 

HCT

(Hui et al., 2019)

M  =     ∑  V ,i ijj=1

1
4

4

V  = ij

1, if sp  ≠ spj i

0, otherwise{

4 spj ≠ spi

3 spj ≠ spi

2 spj ≠ spi

1 spj ≠ spi

0 spj ≠ spi

Mi = 0.00
Mi = 0.25
Mi = 0.50
Mi = 0.75
Mi = 1.00

non-mixed tree
low mixed tree

medium mixed tree
highly mixed tree

completely mixed tree 

NMT
LMT
MMT
HMT
CMT

(Hui et al., 2019)

U  =    ∑  K ,i ijj=1

1
4

4

K  = ij

0, if d  < dj i

1, otherwise{

4 dj < di

3 dj < di

2 dj < di

1 dj < di

0 dj < di

Ui = 0.00
Ui = 0.25
Ui = 0.50
Ui = 0.75
Ui = 1.00

dominant tree
sub-dominant tree
medium sized tree

weak tree
absolutely week tree

DoT
SDT
MST
WT

AWT

(Hui et al., 2019)
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hypothesized that their spatial patterns vary greatly, 
and dataset from an old-growth forest in southwest-
ern China were used to reveal the spatial patterns of 
structural types and the results was explained. This 
approach is conducive to understanding the nature 
of forest communities. The results of this study will 
have multiple implications for forest resource moni-
toring and quality improvement, ecosystem services 
and functions, and biodiversity conservation.

Materials and methods
Study sites

Our field study was conducted at Guangxi Daya-
oshan National Nature Reserve, located in Jinx-
iu Yao Autonomous County, Laibin City, Guangxi 
Zhuang Autonomous Region (109°50'–110°27'E, 
23°40'–24°28'N), China. The total area of the study 
site is 25594.7 ha, with an elevation of 513–1321 m, 
annual sunshine duration of 1268.7 h, average an-
nual temperature of 17 °C, and annual precipitation 

of 1823.9 mm. The study area, which is a rainfall 
center of Guangxi, is surrounded by seven counties: 
Mengshan, Lipu, Luzhai, Xiangzhou, Wuxuan, Guip-
ing and Pingnan. The complex terrain of the region 
includes the Shengtang Group peaks, lower-altitude 
mountains, high and low hills, and various Danxia 
landforms. Within the reserve, wildlife populations 
such as Cathaya argyrophylla Chun & Kuang, Bretsch-
neidera sinensis Hemsl., Taxus wallichiana var. mairei 
(Lemee & H. Léveillé) L. K. Fu & Nan Li, Sauvagesia 
rhodoleuca (Diels) M.C.E. Amaral, Mussaenda shikokia-
na Makino, Euryodendron excelsum Hung T. Chang and 
Dayaoshania cotinifolia W. T. Wang are protected as are 
evergreen broadleaf forest ecosystems. The reserve 
lies within the transitional region between the south 
and middle tropics, and its vegetation is composed 
of 27 phytoformations: 9 evergreen broadleaf forests, 
11 monsoon evergreen broadleaf forests, 2 season-
al rainforests, 3 mid-mountain coniferous broadleaf 
mixed forests, and 2 hilltop moss formations. In 
2013, there were 947 species in 445 genera and 157 
families, including 107 dicotyledonous plants and 16 
gymnosperms in 7 families and 10 genera.

Fig. 1. Study site and tree positions. Colored dots represent populations with abundance ranked below 12th in the old-
growth forest
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Plot establishment

A standard fixed plot of 6 ha (110°14'51.06"E, 
24°09'55.47"N) was established in 2018–2019 in 
an evergreen broadleaf forest. The plot was set up 
according to the criteria of the Center for Tropical 
Forest Science of the Smithsonian Tropical Research 
Institute (Condit, 1995). First, an old-growth stand 
was selected and a total station (NTS-372R10, South-
ern Mapping Company, Guangzhou, China) was used 
to determine the four boundaries of the quadrat, and 
then the quadrat was divided into 150 sub-quadrats 
(20 m × 20 m), which were further divided into 16 
small quadrats (5 m × 5 m), in which the position of 
each tree was plotted (x, y) and the tree species iden-
tified. The tree height (m), DBH (cm), height of the 
first branch (m), crown width (m2), and the growth 
state of each tree (e.g., tilt, bend, dieback, diseases, 
and pests) were recorded for a total of 39,733 liv-
ing trees belonging to 144 species, 90 genera, and 48 
families (Fig. 1).

Data analyses

Classification of structural types
First, the values of Wi, Mi, and Ui were calculat-

ed for each tree in the quadrats using an online pro-
gram, see http://winkelmass.cn/intros. These three 
variables were then classified according to their value 
levels (0, 0.25, 0.50, 0.75, 1.0) and their basic quan-
titative information was analyzed, resulting in a total 
of 15 structural types (Table 2, Fig. A1). To eliminate 
edge effects, a buffer of 5 m was set when calculat-
ing the parameters; i.e., all trees within 5 m of the 
boundary of the plot were regarded as adjacent trees, 
whereas trees in the core area were considered both 
adjacent and reference trees (Li et al., 2022). The 
number of individuals for each type is counted only 

in the core area. The distributions of trees of each 
structural type are shown in Fig. 2.

Distribution pattern and spatial correlation
A univariate distribution model g11(r) of the pair 

correlation function (PCF) was used to analyze the 
point distribution of structural types. The g11(r) mod-
el calculates the number of trees within a circle with 
radius r centered on any tree, which well describes 
the change in forest distribution type with scale 
(Getzin et al., 2006; Getzin et al., 2008). As soil and 
microclimate data were not available, we applied the 
commonly used complete spatial randomness (CSR) 
model as the null model, and the maximum radius r 
of the circle was set to ¼ of the small side of the quad-
rat (r = 200/4 m). A Monte Carlo method was used 
to generate the simulation envelope. The simulation 
time was set as nsim = 199, and the circle width as 
nrank = 1. We used the edge correction setting “cor-
rection = best”. Goodness of fit was tested using the 
setting “side = two.sided”, and its significance level 
was set at 0.01 [alpha = 2 × 1 / (1 + 199)] (Badde-
ley et al., 2015). Observed values above, within, and 
below the envelope represented clustered, random, 
and regular distributions, respectively. The bivariate 
distribution model g12(r) of the PCF was used to ana-
lyze the spatial associations among structural types. 
Random labeling was set as the null model, and the 
residual parameters were the same as those in g11(r). 
Observed values above, within, and below the simu-
lation envelopes were defined as positive, random/
irrelevant, and negative associations, indicating at-
traction, no obvious relationship, and repulsion, 
respectively. Data analysis and graphics generation 
were performed using the spatstat package (Baddeley 
et al., 2015, 3.0-8 version) in R (R Core Team, Vien-
na, Austria, 4.2.0 version).

Table 2. Basic information of 15 structural types in a 6 ha old-growth forest plot in south China

Structural 
types

Species rich-
ness

Number of 
individuals

Number of 
shrubs

Number of 
trees

DBH ± SD 
(cm)

Tree height ± SD 
(m)

Crown area ± SD 
(m2) 

HRT 65 191 74 117 6.85 ± 0.59 5.40 ± 3.74 1.95 ± 1.09
ReT 127 5941 2160 3781 6.58 ± 0.11 5.29 ± 3.85 1.97 ± 1.18
RaT 141 17519 6424 11095 6.45 ± 0.06 5.35 ± 3.93 1.98 ± 1.20
CT 123 5264 1871 3393 6.71 ± 0.12 5.36 ± 3.97 1.98 ± 1.20
HCT 108 1632 573 1059 6.37 ± 0.19 5.45 ± 4.05 2.02 ± 1.24
NMT 7 61 28 33 2.78 ± 0.28 5.18 ± 3.47 1.96 ± 1.16
LMT 26 331 207 124 3.33 ± 0.17 5.00 ± 3.82 1.95 ± 1.24
MMT 52 1362 745 617 3.89 ± 0.11 5.22 ± 3.82 1.95 ± 1.21
HMT 103 5826 2574 3252 5.05 ± 0.07 5.38 ± 4.00 1.99 ± 1.22
CMT 143 22967 7548 15419 7.11 ± 0.05 5.35 ± 3.92 1.98 ± 1.19
DoT 113 6041 1494 4547 16.22 ± 0.16 5.65 ± 4.24 2.08 ± 1.27
SDT 120 6087 1955 4132 7.48 ± 0.07 5.46 ± 3.95 2.02 ± 1.19
MST 127 6065 2267 3798 4.48 ± 0.04 5.30 ± 3.80 1.98 ± 1.19
WT 125 5914 2491 3423 2.86 ± 0.02 5.21 ± 3.82 1.94 ± 1.17
AWT 124 6440 2895 3545 1.79 ± 0.01 5.13 ± 3.79 1.90 ± 1.17

http://winkelmass.cn/intros
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Mark character
The mark correlation function (MCF) kf(r) was 

used to analyze the changes in tree species with ob-
servation scale. For each structural type, kf(r) meas-
ures the similarity of trees i and j at distance r. Its test 
function f has two parameters, f (m1, m2), where m1 
and m2 represent different species. The maximum ob-
servation radius r was set to 50 m, and a Monte Carlo 
method was used to generate a simulation envelope 
with 199 simulation times. We applied the edge cor-
rection setting “correction = best”. Observed values 
above, within, and below the simulated envelope 
indicated conspecific aggregation/interspecific ex-
clusion, independence, and conspecific exclusion/
interspecific aggregation, respectively (Muvengwi 
et al., 2018). The mark variogram function (MVF) 
γ(r) was used to analyze tree size similarity between 
the ith and jth trees at distance r (Getzin et al., 2010; 
Muvengwi et al., 2018). Tree size refers specifically 
to DBH, and its parameter setting was the same as 
that in kf(r). Observed values above, within, and be-
low the simulated envelope indicated large tree clus-
tering, size independence, and small tree clustering, 
respectively (Muvengwi et al., 2018). The data were 
analyzed using the spatstat package (Baddeley et al., 
2015, 3.0-8 version) in R.

Results
Spatial patterns of distribution classes

HRT had a random distribution at r  =  0–50 m 
(Fig. 3a); the observed values of other distribution 
classes were far from the upper line of the Monte 

Carlo simulation envelope at most scales, and the de-
gree of aggregation tended to increase with increas-
ing grades of W (Fig. 3b–e). HRT was randomly asso-
ciated with the other four distribution classes at each 
scale (Fig. 3f–i). ReT slightly repelled RaT, as well as 
two aggregative trees, at scales of r = 4–10, 0–2, and 
4–11 m, but they had a random association at the 
remaining scales (Fig. 3j–l). RaT and two aggregative 
trees were mildly attracted at some scales, but main-
tained random association at most scales (Fig. 3m–
n). Similarly, the two aggregative trees were mutually 
attractive at r = 0–4 and 7–28 m, but showed a ran-
dom correlation at r = 28–50 m (Fig. 3o).

Spatial pattern of mixture classes

With the exception of r  =  27–30 m, the class 
NMT was distributed in clusters (Fig. 4a). LMT was 
randomly distributed at r  =  5–10, 14–25, and 32–
45 m, but was clustered at other scales, similar to 
MMT (Fig. 4b–c). However, the scale of aggregation 
of HMT expanded to r = 0–38 m, and that of CMT 
to every scale (Fig. 4d–e). In most cases, NMT and 
low to medium mixed trees were mutually attrac-
tive (Fig. 4f–g), but randomly correlated with HMT 
and repulsed CMT (Fig. 4h, i). LMT and MMT were 
mutually attractive at r = 0–6, 14–16, and 24–26 m, 
but were randomly correlated at other major scales 
(Fig.  4j). LMT repulsed HMT at r  =  0–3 and 10–
41 m, whereas the degree and scale of the repulsion 
of CMT were further expanded (Fig. 4k, l). The spa-
tial association between MMT and two highly mixed 
trees was dominated by exclusion (Fig. 4m–n), but 
the latter were mutually repulsive only at r = 0–4 m 
(Fig. 4o).

Fig. 2. Pattern of distribution classes (a), mixture classes (b), and differentiation classes (c)
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Fig. 3. Distribution patterns and spatial correlations of distribution classes. Solid lines indicate observed values, and the 
gray areas indicate the 95% Monte Carlo simulation envelope. Green lines indicate clusters (a–e) and attraction (f–o), 
red lines indicate regularity (a–e) and repulsion (f–o), and black lines indicate random pattern (a–e) and correlation 
(f–o). Explanations for figures are the same as following

Fig. 4. Distribution patterns and spatial correlations of mixture classes. Explanations for figures are the same as above
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Spatial pattern of differentiation classes

The distribution patterns of the four differentia-
tion classes were very similar. They were regularly 
distributed at r = 0–1 m, maintained aggregation at a 
scale of approximately r = 1–45 m, and then assumed 

a random distribution at larger scales (Fig.  5a–e). 
In addition to correlation pairs that were positively 
correlated at r = 0–1 m, the spatial correlation be-
tween any two other differentiation classes was also 
very similar, with random correlations maintained at 
r = 1–50 m (Fig. 5f–o).

Fig. 5. Distribution patterns and spatial correlations of the differentiation classes. Explanations for figures are the same 
as following

Fig. 6. Tree species spatial distribution. Solid lines indicate observed values, and gray shading indicates the 95% Monte 
Carlo simulation envelope. Green and red lines indicate intra- and interspecific clusters, respectively, and black lines 
indicate a random pattern of tree species
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Mark character of structural types

The tree species of HRT showed intraspecific 
aggregation at r = 20–26 m, but had a random pat-
tern at other scales (Fig.  6a). All observed values 
of the other four distribution classes were much 
higher than the upper line of the Monte Carlo sim-
ulation envelope, implying intraspecific aggrega-
tion (Fig.  6b–e). The tree species of NMT showed 
intraspecific aggregation at small and large scales 
(r = 0–1, 33–46 m), but were randomly distributed 
at medium scales. The intraspecific aggregations of 
LMT, MMT, and HMT were obvious (Fig. 6f–i). CMT 
showed a similar trend, with interspecific isolation at 
r = 0–1 m (Fig. 6j). Clear intraspecific aggregation of 
differentiation classes was also observed, and the in-
tensity decreased as the scale increased (Fig. 6k–o).

The tree sizes included in HRT and HCT were ran-
domly distributed (Fig. 7a, e). For ReT, small trees 
were clustered at r = 3–40 m, whereas trees of differ-
ent sizes were randomly distributed at other scales 
(Fig. 7b). RaT and CT had a similar tree size distri-
bution, with small trees clustered at r = 0–42 m and 
trees of different sizes randomly distributed at larger 
scales (Fig. 7c, d). The tree sizes of NMT were ran-
domly distributed (Fig.  7f), whereas small trees of 
LMT and MMT clustered within various scales and 
residual trees were randomly distributed in others 
(Fig. 7g, h). Small trees of HMT and CMT aggregat-
ed at scales r = 0–31 and 0–50 m (Fig.  7i, j). The 
tree sizes within the different differentiation classes 

showed a similar pattern; that is, except for random 
distribution of a small portion of trees at the large 
scale, residual observed values were below the Mon-
te Carlo envelope (Fig. 7k–o).

Discussion
Structural properties of distribution 
classes in natural forests

Distribution patterns indirectly reflect the succes-
sional process of forest communities (Getzin et al., 
2008). Aggregation occurs widely in natural forests, 
especially within stands in the early succession stag-
es (Wang et al., 2018; Bastias et al., 2019; Engone 
Obiang et al., 2019; Lv et al., 2023). The much low-
er abundance of HRT than of HCT indicated aggre-
gation distribution within the old-growth forest on 
the Dayao Mountain (Zhang & Hui, 2021). The rela-
tionship between HRT and its nearest neighbors was 
absolutely uniform, and spaces among individuals 
were large in some cases, which is often understood 
as the result of intense competition (Engone Obiang 
et al., 2019). This finding may also be the main ex-
planation for the random distribution and random 
association of this structural type with residual dis-
tribution classes. Tree population sizes also affect 
the types of distribution pattern (Zhao et al., 2014). 
Residuals support the aggregation of communities, 
which can be caused by many biological or abiotic 

Fig. 7. Tree size spatial distribution. Solid lines indicate observed values; gray shading indicates the 95% Monte Carlo 
simulation envelope. Red and black lines indicate clusters of small trees and random tree size, respectively
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factors (Bastias et al., 2019; Li et al., 2022). In the 
studied forest, CT and HCT maintained their aggre-
gative characteristics within the structural unit and 
were mutually attractive, which would likely result in 
the formation of larger clumps. Regular and random 
trees were also clustered, suggesting that classifica-
tion revealed the clustering intensity of the distribu-
tion pattern. The distribution pattern of distribution 
classes also showed that the results of the nearest 
neighbor analysis (W) and spatial function g(r) are 
not always consistent, with the latter producing more 
clustering (Ghalandarayeshi et al., 2017). Nearest 
neighbor analysis is instructive with respect to ex-
pression, sampling, and practice (Bettinger & Tang, 
2015; Hui et al., 2019; Zhang et al., 2019), whereas 
spatial functions provide more reliable information 
on outcomes and ecological processes (Kint et al., 
2003; Ghalandarayeshi et al., 2017), although they 
are heavily influenced by the null model (Carrer et 
al., 2018). Targeted selection or the simultaneous 
use of both a nearest neighbor analysis (W) and a 
spatial function g(r) may be more conducive to fully 
revealing the characteristics of stand structures.

The species included in HRT were randomly dis-
tributed, and their abundance accounted for approx-
imately half of the total community. Higher richness 
of other distribution classes was associated with 
stronger species aggregation. As most populations 
in natural forests are clustered (Wang et al., 2018; 
Engone Obiang et al., 2019), the probability that the 
nearest neighbor of a species, especially a rare spe-
cies, is a tree of the same species will be higher than 
the community average of the occurrence of that spe-
cies (Condit et al., 2000; Nguyen et al., 2016), sup-
porting our results. However, in other distribution 
patterns, the distribution of richness among struc-
tural types and its effect on tree species distribution 
are unclear, given the small number of natural forests 
with a regular or random distribution and the paucity 
of studies of those forests (Li et al., 2022). Tree size 
distribution is also related to structural types. Dif-
ferences in DBH may determine the spatial distribu-
tion of tree size, where smaller differences indicate 
greater probability of a random distribution, and vice 
versa. The tree sizes of HCT and HRT were random-
ly distributed, and the maximum and minimum di-
ameters of those trees were average. RaTs accounted 
for approximately 50% of the trees of each diame-
ter size class in natural forests (Zhang & Hui, 2021; 
Li et al., 2022), but the extremes in DBH included 
many small trees that formed a clump. In natural 
forests with distinct vertical stratifications, includ-
ing the study forest, the upper layer has an obvious 
aggregation pattern of tree size that is significantly 
different at DBH, whereas tree size in the the lower 
layer is likely have a more random pattern (Ghaland-
arayeshi et al., 2017; Pommerening et al., 2020). The 

relationship between tree size and distribution pat-
tern is mainly responsible for the particular resource 
utilization strategy. Gap regenaeration and seed dis-
persal limitation result in sapling aggregation, with 
their competition leading to size differentiation, high 
mortality, and increasing neighbor distance.

Structural properties of mixture classes 
in natural forests

Aggregation is a common characteristic of mix-
ture classes. Both the mixing pattern and the distri-
bution pattern affect neighbor interactions (Potvin 
& Dutilleul, 2009), regulate tree growth processes, 
and may increase tree mortality (Bastias et al., 2019). 
Conversely, the death and regeneration of natural 
forests simultaneously alter the distribution pattern 
and mixing status, consistent with the absence of an 
absolute relationship between distribution pattern 
and mingling. In natural pure and mixed European 
beech forests, proximate trees are randomly distrib-
uted (Petritan et al., 2012). Thus, the species com-
position and diversity of natural forests in different 
climatic regions of China may differ; however, the 
distribution eventually becomes random (Zhang et 
al., 2018). Our results are strongly supported by pre-
vious findings that the degree of mixture in multispe-
cies forests is independent of the distribution pattern 
(Xu et al., 2006; Li et al., 2020). However, using a 
computer simulation, Wang et al. (2016) found that 
a random distribution has no effect on the species 
mixture, whereas it is reduced by aggregation and 
increased by regular distribution. Nonetheless, if bi-
ological interactions are not considered, simulations 
do not always provide realistic scenarios. In mixed 
forests, the distribution pattern of a tree species is 
always related to that of other tree species (Graz, 
2004), with both a high level of mixture and aggre-
gative distribution common at the community level.

Individuals of the two low-mixing classes were 
small and mutually attractive, suggesting conspecif-
ic aggregation that was likely caused by gravitational 
seed and dispersal limitation (Ghalandarayeshi et al., 
2017; Wang et al., 2018; Engone Obiang et al., 2019). 
However, habitat preference, habitat filtering, distur-
bance and reproductive behavior can also enhance 
the aggregation of populations (Getzin et al., 2008; 
Shen et al., 2013; Bastias et al., 2019). Particularly 
in alpine regions, complex terrain plays a secondary 
role in the distribution of habitat resources (Lv et 
al., 2023), altering species distribution and interspe-
cific associations, and strengthening species–habi-
tat associations (Shen et al., 2013). As the mixture 
grade increased, the spatial association of mixture 
classes changed from attraction to randomness, and 
then to repulsion, such that greater differences in the 
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mixture grade were associated with more obvious re-
pulsion. These observations indicate that the species 
composition of a community forms a mosaic of pure 
forest and mixed forest in space, potentially leading 
to a decrease in species aggregation with an increase 
in scale that influences future community develop-
ment (Carrer et al., 2018). A mosaic distribution is a 
typical attribute of aged forests (Spies, 1998; Getzin 
et al., 2008), as it is directly related to species inter-
action and resource utilization (Shen et al., 2013), 
but also reflects internal and external ecological pro-
cesses. Homospecific attraction and heterospecif-
ic repulsion reflect the simultaneous occurrence of 
multiple ecological processes in the aged forest (Car-
rer et al., 2018). In species-rich tropical forests, high 
species diversity leads to lower density, which in turn 
leads to complex intra- and interspecific interactions 
(Nguyen et al., 2016).

The quantitative distribution of individuals with-
in the mixture classes of the old-growth forest on 
Dayao Mountain was similar to that in many other 
natural forests (Li et al., 2020; Lv et al., 2023); that 
is, only a small proportion of small trees were the 
same species as their closest neighbors. The sizes 
of these small trees were randomly distributed in 
space, suggesting that the probability of conspecific 
negative density dependence was either low or not 
obvious, in contrast to the mechanism of species di-
versity maintenance in tropical and other subtrop-
ical natural forests (Paine et al., 2012; Comita et 
al., 2014; Zhu et al., 2015). Due to multiple factors 
(Birch et al., 2019), conspecific negative density de-
pendence may be weak in montane climax communi-
ties. Larger individuals have higher degrees of min-
gling, which is consistent with the conclusion that 
diameter is linearly related to the mixing degree (Li 
et al., 2020) and supports the mingling-size hypoth-
esis (Wang et al., 2018; Pommerening et al., 2020). 
Most large interspecifics in the studied forest were 
uncommon species that provided shelter for small 
trees (Zhu et al., 2015), as proposed by the Janzen–
Connell hypothesis (Comita et al., 2014; Nguyen et 
al., 2016). AWT implies heterospecific aggregation 
within at least a structural unit, and its higher values 
indicate that heterospecific aggregation is prevalent 
in this community, accounting for the high degree of 
mixture in the community at a very small scale. Bas-
tias et al. (2019) suggested that trees in communi-
ties with higher richness and functional diversity are 
closer to each other, which supports our results and 
is consistent with the status of Dayao Mountain as a 
global biodiversity hotspot (Li et al., 2023). Despite 
the importance of studying the mechanism of species 
coexistence by combining heterospecific effects, this 
approach is often neglected (Wang et al., 2018). In 
our consideration of the effect of scale, intraspecif-
ic aggregation dominated the species distribution of 

the community, indicating that species mixture is re-
lated to scale. Additionally, the increase in mingling 
and enhanced aggregation of small trees were syn-
chronized, suggesting that heterospecific small trees 
promote a high degree of mixing within the commu-
nity. Rare species are important components of spe-
cies diversity in aged forests (Li et al., 2023); they are 
typically smaller and exhibit higher aggregation than 
common species (Condit et al., 2000). In addition to 
tree death, the emergence of rare species is an impor-
tant driver of mixture pattern changes.

Structural properties of differentiation 
classes in natural forests

Among differentiation classes, both DoT and SDT 
contained many small trees with smaller proportions 
than in inferior classes (WT and AWT). This finding 
suggests that some structural units in the plot were 
dominated by small trees; however, more often, small 
trees coexisted with large trees, as also observed by 
Pommerening et al. (2020). The coexistence of small 
and large trees may favor reduced competition and 
the maintenance of community stability, as shown 
by the random association of various differentiation 
classes. Although differentiation classes in the study 
area had a similar clumped distribution pattern, many 
other studies have found that both the upper layer of 
large trees and large trees in old stands tend to have a 
regular or random distribution, whereas small trees, 
understory trees, and young stands tend to have a 
clustered distribution (Condit et al., 2000; Getzin et 
al., 2006; Wehenkel et al., 2015; Wang et al., 2018; 
Zhang et al., 2018), there are also counterexamples 
(Li et al., 2008). Dominant trees at the structural type 
and stand levels belong to different categories (Li et 
al., 2022). The former contains many small trees that 
enhance the aggregation intensity of the distribution 
pattern, whereas the latter consists of large trees that 
compose the community framework, completely oc-
cupy the canopy advantage, and drive community de-
velopment (Engone Obiang et al., 2019; Caron et al., 
2021). Thus, the relationship between size differen-
tiation and DBH at the stand level is well expresssed 
by a negative exponential function rather than a lin-
ear model (Li et al., 2020), thereby explaining the 
differences in their distribution patterns.

Recent studies have shown that the U of natu-
ral forests plays a role in ‘equalization’, resulting in 
a similar number of trees in differentiation classes 
(Zhang et al., 2019; Li et al., 2020; Lv et al., 2023), 
consistent with our results. Size differentiation al-
ways occurs within a structural unit, with reference 
tree i having a similar probability of belonging to one 
of these differentiation classes (Petritan et al., 2012). 
This possibility is further supported by the similar 
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tree size distribution of the differentiation classes in 
the study forest. Hui et al. (2019) argued that this is 
the most common situation in natural forests, which 
suggests that the spatial distribution of tree size is 
in a state of equilibrium rather than a neutral state. 
Other studies have shown that stable differentiation 
is an early event that occurs even in artificial forests 
after their near-natural conversion (Li et al., 2020), 
and seems to be only partially influenced by environ-
mental factors (Lv et al., 2023). Uniform differenti-
ation should be emphasized in forest management 
to maintain community structural balance. Similar 
species abundances and aggregation are common 
characteristics of differentiation classes. The slight-
ly lower degree of species aggregation in DoT than 
in the other differentiation classes suggests mul-
tispecies co-dominance in this community, which is 
consistent with the characteristics of other natural 
forests near the Tropic of Cancer (Li et al., 2008; 
Nguyen et al., 2016; Li et al., 2023). Most research 
has been focused on the distribution characteristics 
of differentiation classes rather than their underlying 
mechanism. A stable quantitative distribution of dif-
ferentiation classes may be more useful in competi-
tive analysis and selection systems (Hui et al., 2018).

Conclusion

The spatial structure of forests is highly complex 
and can be analyzed from multiple perspectives. In 
this study, we classified the old-growth forest in the 
Dayaoshan Mountains of Guangxi, China, into 15 
structural types based on nearest-neighbor relation-
ships, and analyzed their distribution patterns, spa-
tial associations, and mark character. These structur-
al types exhibit various patterns, all of which can be 
well explained by prevailing ecological theories, thus 
supporting the rationale of our classification system. 
Each structural type plays a different role within the 
community, enriching our understanding of natural 
forest ecosystems, particularly the construction of 
their spatial structures, and potentially providing in-
sights into ecological processes that are difficult to 
observe directly. In studies aimed at forest biodiver-
sity conservation and monitoring, spatial structural 
differences should be examined at the community 
and structural type levels through systematic analy-
ses at different scales, especially the fine scale; how-
ever, this approach has been largely neglected. This 
study also contributes to closing the knowledge gap 
regarding the medium-scale spatial structure of sub-
tropical natural forests. Comparisons of forest struc-
tural types at the global or regional level and explo-
ration of the non-spatial structure of structural types 
remain areas of future research.
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