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Abstract: Spatial structure plays a vital role in forest operation, community dynamics, biodiversity con-
servation, and ecological functions, and it has been well documented at population, community, and re-
gional levels. However, most studies on spatial structure focus on tree attributes without considering the
relationships among neighbors. Based on the position, species, and size of neighboring trees, forest spatial
structure can be classified into distribution, mixture, and differentiation classes. We analyzed the spatial
patterns of these types in a 6-ha old-growth forest plot in southern China using pair correlation functions,
mark correlation functions, and mark variogram functions. The results revealed that: (1) The distribution
classes primarily exhibited aggregated patterns, with random associations dominating their relationships;
(2) The mingling classes also exhibited aggregation, with spatial associations shifting from attraction to
repulsion as the mingling degree increased; (3) The spatial structure of the differentiation classes was pre-
dominantly characterized by aggregation and random association. Intraspecific aggregation and small-tree
aggregation were common features across all structural types. These findings are well explained by forest
ecology theories such as dispersal limitation, mingling-size hypothesis, and the Janzen-Connell hypothesis,
suggesting that different tree groups play distinct roles in forest communities. This study enhances our
understanding of spatial structure in natural forest ecosystems and contributes to the monitoring, assess-
ment, and management of forest resources.
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Introduction

Forests are three-dimensional physical organisms
(Spies, 1998) with broad-ranging structures and
multiple forms related to their species, individual
size, abundance, and shape, as well as their configu-
ration in time and space (Hui et al., 2019; Dorji et al.,
2021; Remadevi et al., 2023). In terms of space, forest

structure can be divided into vertical and horizontal
components (Bohlman, 2015; Hui et al., 2019). And
more and more studies from forest ecosystems em-
phasize the importance of spatial structure (MclIntire
& Fajardo, 2009; Hui et al., 2019; Li et al., 2022),
as it is closely related to environmental conditions,
resource availability (Martens et al., 2000; Lv et al.,
2023), biodiversity, productivity (Zhang et al., 2021),
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community stability, stress resistance, and resiliency
(Schneider et al., 2019; Zhang et al., 2021), reflecting
the trend of community succession. Spatial structure
is also the result of tree growth and its integrated re-
sponse to exogenous disturbances, such as drought.
Thus, the spatial structure of a forest significantly
affects forest management decision-making, guide-
lines, technology applications, and the evaluation of
policy outcomes (Carrer et al., 2018).

A remarkable feature of spatial structure is the
scale effect, the properties of which change contin-
uously depending on the observation scale. A large
scale reflects the influence of habitat heterogeneity
on the tree point pattern, dynamics and demograph-
ics of forest communities (Getzin et al., 2008; Shen
et al., 2013), while a small scale is the main domain
of tree interactions (Potvin & Dutilleul, 2009; Erfan-
ifard et al., 2018), including between individual trees
and the environment, and often determines structural
features that differ markedly from those observed at
other scales, including species diversity, abundance,
and microhabitat (Pinzon et al., 2018; Zhang et al.,
2021). Small-scale spatial structure and dynamics
have become an important basis for understanding
forest ecological processes such as regeneration,
growth, competition, dependence, death, and de-
composition, as well as predicting the formation and
maintenance mechanism of species diversity (Getzin
et al., 2006). However, regardless of scale, most stud-
ies focus on spatial structures related to tree attrib-
utes, especially appearance characteristics, such as
life stage, tree size, growth status, life form, species
composition, and forest community type (Carrer et
al., 2018; Engone Obiang et al., 2019; Bianchi et al.,
2021). The failure to consider relationships among
trees has resulted in an inadequate understanding of
forest spatial structure (Zhang et al., 2021).

According to our knowledge, the relationship of
nearest neighbors can provide a new approach to the

analysis of forest spatial structures. A forest can be
considered as a collection composed of n structural
units (Zhang et al., 2018; Zhang & Hui, 2021; Li et
al., 2022). In a structural unit of four trees, species
distribution pattern, species mixing and size differen-
tiation of adjacent trees j surrounding reference tree
i are well described by a group of indices, including
the uniform angle index (W), species mingling (M)
and dominance (U) (Fig. Al). These parameters are
independent of each other (Li et al., 2022; Remadevi
et al., 2023), with the uniform expression and the
exact same value hierarchy 0, 0.25, 0.50, 0.75, and
1.0 (Kint et al., 2003; Zhang et al., 2019). Each value
class has a clear biological significance and is easily
recognizable in woodlands (Hui et al., 2019). Based
on these characteristics, forest stands can be divided
according to the distributions, mixing and size dif-
ferentiation of their tree groups, which define what
“structural types” in this study. Among them, distri-
bution classes are composed of highly regular trees
(HRT), regular trees (ReT), random trees (RaT),
clumped trees (CT), and highly clumped trees (HCT)
(Zhang et al., 2018). Mixture classes can be divided
into null mixed (NMT), low mixed (LMT), medium
mixed (MMT), high mixed (HMT), and completely
mixed trees (CMT), and differentiation classes com-
prise dominant trees (DoT), sub-dominant trees
(SDT), medium-sized trees (MST), weak trees (WT),
and absolutely weak trees (AWT) (Li et al., 2020).
The structural types are tree communities that are
lower than the stand but higher than the single tree
level (Table 1). To date, the properties of these struc-
tural types remain unknown.

The distribution pattern, spatial associations, and
tree marks are the three most important aspects of
forest spatial structure (Condit et al., 2000; McIntire
& Fajardo, 2009; Birch et al., 2019). Since the ob-
jects included in the distribution class, the mixture
class, and the differentiation class are different, we

Table 1. Structural types based on the spatial relationships of nearest neighbors

Formulas Patterns Values Structural types References
1 < 4020, W, = 0.00 highly regular tree HRT (Hui et al., 2019)
W=7 Zj:] Zy 3020, W, = 0.25 regular tree ReT
202 =
7 = L, ifa < a, = 72° ) % N % W, = 0.50 random tree RaT
i~ 0, otherwise o, 2 0, W, = 0.75 clumped tree CT
0o 20, W, = 1.00 highly clumped tree HCT
1 ws 4 sp; # sp, M, = 0.00 non-mixed tree NMT (Hui et al., 2019)
M= z}'=1 Vi 3 sp; # sp, M, = 0.25 low mixed tree LMT
. 2 Sp; # sp; M. = 0.50 medium mixed tree MMT
V.= 1,1fspj¢spi 1 i - )
i =) 0, otherwise Sp; # Sp; M, =0.75 highly mixed tree HMT
O'sp; # sp, M, = 1.00 completely mixed tree CMT
1w 4d <d, U,=0.00 dominant tree DoT (Hui et al., 2019)
U=, Ky 3d,<d, U, =0.25 sub-dominant tree SDT
2d. <d. = i i
. { 0,ifd <d, | d} < d, U, - 0.50 medium sized tree MST
i = 11, otherwise < d; U,=0.75 weak tree WT
0d <d, U, = 1.00 absolutely week tree AWT
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hypothesized that their spatial patterns vary greatly,
and dataset from an old-growth forest in southwest-
ern China were used to reveal the spatial patterns of
structural types and the results was explained. This
approach is conducive to understanding the nature
of forest communities. The results of this study will
have multiple implications for forest resource moni-
toring and quality improvement, ecosystem services
and functions, and biodiversity conservation.

Materials and methods

Study sites

Our field study was conducted at Guangxi Daya-
oshan National Nature Reserve, located in Jinx-
iu Yao Autonomous County, Laibin City, Guangxi
Zhuang Autonomous Region (109°50'-110°27'E,
23°40'-24°28'N), China. The total area of the study
site is 25594.7 ha, with an elevation of 513-1321 m,
annual sunshine duration of 1268.7 h, average an-
nual temperature of 17 °C, and annual precipitation

of 1823.9 mm. The study area, which is a rainfall
center of Guangxi, is surrounded by seven counties:
Mengshan, Lipu, Luzhai, Xiangzhou, Wuxuan, Guip-
ing and Pingnan. The complex terrain of the region
includes the Shengtang Group peaks, lower-altitude
mountains, high and low hills, and various Danxia
landforms. Within the reserve, wildlife populations
such as Cathaya argyrophylla Chun & Kuang, Bretsch-
neidera sinensis Hemsl., Taxus wallichiana var. mairei
(Lemee & H. Léveillé) L. K. Fu & Nan Li, Sauvagesia
rhodoleuca (Diels) M.C.E. Amaral, Mussaenda shikokia-
na Makino, Euryodendron excelsum Hung T. Chang and
Dayaoshania cotinifolia W. T. Wang are protected as are
evergreen broadleaf forest ecosystems. The reserve
lies within the transitional region between the south
and middle tropics, and its vegetation is composed
of 27 phytoformations: 9 evergreen broadleaf forests,
11 monsoon evergreen broadleaf forests, 2 season-
al rainforests, 3 mid-mountain coniferous broadleaf
mixed forests, and 2 hilltop moss formations. In
2013, there were 947 species in 445 genera and 157
families, including 107 dicotyledonous plants and 16
gymnosperms in 7 families and 10 genera.
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Fig. 1. Study site and tree positions. Colored dots represent populations with abundance ranked below 12th in the old-
growth forest
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Plot establishment

A standard fixed plot of 6 ha (110°14'51.06"E,
24°09'55.47"N) was established in 2018-2019 in
an evergreen broadleaf forest. The plot was set up
according to the criteria of the Center for Tropical
Forest Science of the Smithsonian Tropical Research
Institute (Condit, 1995). First, an old-growth stand
was selected and a total station (NTS-372R , South-
ern Mapping Company, Guangzhou, China) was used
to determine the four boundaries of the quadrat, and
then the quadrat was divided into 150 sub-quadrats
(20 m x 20 m), which were further divided into 16
small quadrats (5 m X 5 m), in which the position of
each tree was plotted (x, y) and the tree species iden-
tified. The tree height (m), DBH (cm), height of the
first branch (m), crown width (m?), and the growth
state of each tree (e.g., tilt, bend, dieback, diseases,
and pests) were recorded for a total of 39,733 liv-
ing trees belonging to 144 species, 90 genera, and 48
families (Fig. 1).

Data analyses

Classification of structural types

First, the values of W, M, and U, were calculat-
ed for each tree in the quadrats using an online pro-
gram, see http://winkelmass.cn/intros. These three
variables were then classified according to their value
levels (0, 0.25, 0.50, 0.75, 1.0) and their basic quan-
titative information was analyzed, resulting in a total
of 15 structural types (Table 2, Fig. A1). To eliminate
edge effects, a buffer of 5 m was set when calculat-
ing the parameters; i.e., all trees within 5 m of the
boundary of the plot were regarded as adjacent trees,
whereas trees in the core area were considered both
adjacent and reference trees (Li et al.,, 2022). The
number of individuals for each type is counted only

in the core area. The distributions of trees of each
structural type are shown in Fig. 2.

Distribution pattern and spatial correlation

A univariate distribution model g (r) of the pair
correlation function (PCF) was used to analyze the
point distribution of structural types. The g, (r) mod-
el calculates the number of trees within a circle with
radius r centered on any tree, which well describes
the change in forest distribution type with scale
(Getzin et al., 2006; Getzin et al., 2008). As soil and
microclimate data were not available, we applied the
commonly used complete spatial randomness (CSR)
model as the null model, and the maximum radius r
of the circle was set to ¥4 of the small side of the quad-
rat (r = 200/4 m). A Monte Carlo method was used
to generate the simulation envelope. The simulation
time was set as nsim = 199, and the circle width as
nrank = 1. We used the edge correction setting “cor-
rection = best”. Goodness of fit was tested using the
setting “side = two.sided”, and its significance level
was set at 0.01 [alpha =2 x 1/ (1 + 199)] (Badde-
ley et al., 2015). Observed values above, within, and
below the envelope represented clustered, random,
and regular distributions, respectively. The bivariate
distribution model g ,(r) of the PCF was used to ana-
lyze the spatial associations among structural types.
Random labeling was set as the null model, and the
residual parameters were the same as those in g, (r).
Observed values above, within, and below the simu-
lation envelopes were defined as positive, random/
irrelevant, and negative associations, indicating at-
traction, no obvious relationship, and repulsion,
respectively. Data analysis and graphics generation
were performed using the spatstat package (Baddeley
et al., 2015, 3.0-8 version) in R (R Core Team, Vien-
na, Austria, 4.2.0 version).

Table 2. Basic information of 15 structural types in a 6 ha old-growth forest plot in south China

Structural Species rich- ~ Number of Number of Number of DBH + SD  Tree height + SD  Crown area + SD
types ness individuals shrubs trees (cm) (m) (m?)
HRT 65 191 74 117 6.85 = 0.59 5.40 = 3.74 1.95 = 1.09
ReT 127 5941 2160 3781 6.58 = 0.11 5.29 = 3.85 1.97 + 1.18
RaT 141 17519 6424 11095 6.45 *= 0.06 5.35+3.93 1.98 + 1.20
CT 123 5264 1871 3393 6.71 = 0.12 5.36 £ 3.97 1.98 = 1.20
HCT 108 1632 573 1059 6.37 = 0.19 5.45 + 4.05 2.02 £ 1.24
NMT 7 61 28 33 2.78 £0.28 5.18 £ 3.47 1.96 £ 1.16
LMT 26 331 207 124 3.33 £0.17 5.00 + 3.82 1.95 +1.24
MMT 52 1362 745 617 3.89 = 0.11 5.22 = 3.82 1.95 + 1.21
HMT 103 5826 2574 3252 5.05 = 0.07 5.38 = 4.00 1.99 + 1.22
CMT 143 22967 7548 15419 7.11 = 0.05 5.35+3.92 1.98 +1.19
DoT 113 6041 1494 4547 16.22 = 0.16 5.65 = 4.24 2.08 = 1.27
SDT 120 6087 1955 4132 7.48 = 0.07 5.46 = 3.95 2.02 £ 1.19
MST 127 6065 2267 3798 4.48 + 0.04 5.30 = 3.80 1.98 £ 1.19
WT 125 5914 2491 3423 2.86 = 0.02 5.21 £ 3.82 1.94 =+ 1.17
AWT 124 6440 2895 3545 1.79 = 0.01 5.13 = 3.79 1.90 = 1.17
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Fig. 2. Pattern of distribution classes (a), mixture classes (b), and differentiation classes (c)

Mark character

The mark correlation function (MCF) kf(r) was
used to analyze the changes in tree species with ob-
servation scale. For each structural type, k/(r) meas-
ures the similarity of trees i and j at distance r. Its test
function f has two parameters, f (m,, m,), where m,
and m, represent different species. The maximum ob-
servation radius r was set to 50 m, and a Monte Carlo
method was used to generate a simulation envelope
with 199 simulation times. We applied the edge cor-
rection setting “correction = best”. Observed values
above, within, and below the simulated envelope
indicated conspecific aggregation/interspecific ex-
clusion, independence, and conspecific exclusion/
interspecific aggregation, respectively (Muvengwi
et al., 2018). The mark variogram function (MVF)
v(r) was used to analyze tree size similarity between
the i and j trees at distance r (Getzin et al., 2010;
Muvengwi et al., 2018). Tree size refers specifically
to DBH, and its parameter setting was the same as
that in k.(r). Observed values above, within, and be-
low the simulated envelope indicated large tree clus-
tering, size independence, and small tree clustering,
respectively (Muvengwi et al., 2018). The data were
analyzed using the spatstat package (Baddeley et al.,
2015, 3.0-8 version) in R.

Results

Spatial patterns of distribution classes

HRT had a random distribution at r = 0-50 m
(Fig. 3a); the observed values of other distribution
classes were far from the upper line of the Monte

Carlo simulation envelope at most scales, and the de-
gree of aggregation tended to increase with increas-
ing grades of W (Fig. 3b—e). HRT was randomly asso-
ciated with the other four distribution classes at each
scale (Fig. 3f-i). ReT slightly repelled RaT, as well as
two aggregative trees, at scales of r = 4-10, 0-2, and
4-11 m, but they had a random association at the
remaining scales (Fig. 3j-1). RaT and two aggregative
trees were mildly attracted at some scales, but main-
tained random association at most scales (Fig. 3m-
n). Similarly, the two aggregative trees were mutually
attractive at r = 0-4 and 7-28 m, but showed a ran-
dom correlation at r = 28-50 m (Fig. 30).

Spatial pattern of mixture classes

With the exception of r = 27-30 m, the class
NMT was distributed in clusters (Fig. 4a). LMT was
randomly distributed at r = 5-10, 14-25, and 32-
45 m, but was clustered at other scales, similar to
MMT (Fig. 4b—c). However, the scale of aggregation
of HMT expanded to r = 0-38 m, and that of CMT
to every scale (Fig. 4d-e). In most cases, NMT and
low to medium mixed trees were mutually attrac-
tive (Fig. 4f-g), but randomly correlated with HMT
and repulsed CMT (Fig. 4h, i). LMT and MMT were
mutually attractive at r = 0-6, 14-16, and 24-26 m,
but were randomly correlated at other major scales
(Fig. 4j). LMT repulsed HMT at r = 0-3 and 10-
41 m, whereas the degree and scale of the repulsion
of CMT were further expanded (Fig. 4k, 1). The spa-
tial association between MMT and two highly mixed
trees was dominated by exclusion (Fig. 4m-n), but
the latter were mutually repulsive only at ¥ = 0-4 m
(Fig. 40).
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Spatial pattern of differentiation classes

The distribution patterns of the four differentia-
tion classes were very similar. They were regularly
distributed at r = 0-1 m, maintained aggregation at a
scale of approximately r = 1-45 m, and then assumed

a random distribution at larger scales (Fig. 5a-e).
In addition to correlation pairs that were positively
correlated at r = 0-1 m, the spatial correlation be-
tween any two other differentiation classes was also
very similar, with random correlations maintained at
r = 1-50 m (Fig. 5f-0).
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Mark character of structural types

The tree species of HRT showed intraspecific
aggregation at r = 20-26 m, but had a random pat-
tern at other scales (Fig. 6a). All observed values
of the other four distribution classes were much
higher than the upper line of the Monte Carlo sim-
ulation envelope, implying intraspecific aggrega-
tion (Fig. 6b-e). The tree species of NMT showed
intraspecific aggregation at small and large scales
(r = 0-1, 33-46 m), but were randomly distributed
at medium scales. The intraspecific aggregations of
LMT, MMT, and HMT were obvious (Fig. 6f-i). CMT
showed a similar trend, with interspecific isolation at
r = 0-1 m (Fig. 6j). Clear intraspecific aggregation of
differentiation classes was also observed, and the in-
tensity decreased as the scale increased (Fig. 6k—o).

The tree sizes included in HRT and HCT were ran-
domly distributed (Fig. 7a, e). For ReT, small trees
were clustered at r = 3-40 m, whereas trees of differ-
ent sizes were randomly distributed at other scales
(Fig. 7b). RaT and CT had a similar tree size distri-
bution, with small trees clustered at r = 0-42 m and
trees of different sizes randomly distributed at larger
scales (Fig. 7c, d). The tree sizes of NMT were ran-
domly distributed (Fig. 7f), whereas small trees of
LMT and MMT clustered within various scales and
residual trees were randomly distributed in others
(Fig. 7g, h). Small trees of HMT and CMT aggregat-
ed at scales r = 0-31 and 0-50 m (Fig. 7i, j). The
tree sizes within the different differentiation classes

showed a similar pattern; that is, except for random
distribution of a small portion of trees at the large
scale, residual observed values were below the Mon-
te Carlo envelope (Fig. 7k-0).

Discussion

Structural properties of distribution
classes in natural forests

Distribution patterns indirectly reflect the succes-
sional process of forest communities (Getzin et al.,
2008). Aggregation occurs widely in natural forests,
especially within stands in the early succession stag-
es (Wang et al., 2018; Bastias et al., 2019; Engone
Obiang et al., 2019; Lv et al., 2023). The much low-
er abundance of HRT than of HCT indicated aggre-
gation distribution within the old-growth forest on
the Dayao Mountain (Zhang & Hui, 2021). The rela-
tionship between HRT and its nearest neighbors was
absolutely uniform, and spaces among individuals
were large in some cases, which is often understood
as the result of intense competition (Engone Obiang
et al., 2019). This finding may also be the main ex-
planation for the random distribution and random
association of this structural type with residual dis-
tribution classes. Tree population sizes also affect
the types of distribution pattern (Zhao et al., 2014).
Residuals support the aggregation of communities,
which can be caused by many biological or abiotic
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factors (Bastias et al., 2019; Li et al., 2022). In the
studied forest, CT and HCT maintained their aggre-
gative characteristics within the structural unit and
were mutually attractive, which would likely result in
the formation of larger clumps. Regular and random
trees were also clustered, suggesting that classifica-
tion revealed the clustering intensity of the distribu-
tion pattern. The distribution pattern of distribution
classes also showed that the results of the nearest
neighbor analysis (W) and spatial function g(r) are
not always consistent, with the latter producing more
clustering (Ghalandarayeshi et al., 2017). Nearest
neighbor analysis is instructive with respect to ex-
pression, sampling, and practice (Bettinger & Tang,
2015; Hui et al., 2019; Zhang et al., 2019), whereas
spatial functions provide more reliable information
on outcomes and ecological processes (Kint et al.,
2003; Ghalandarayeshi et al., 2017), although they
are heavily influenced by the null model (Carrer et
al., 2018). Targeted selection or the simultaneous
use of both a nearest neighbor analysis (W) and a
spatial function g(r) may be more conducive to fully
revealing the characteristics of stand structures.

The species included in HRT were randomly dis-
tributed, and their abundance accounted for approx-
imately half of the total community. Higher richness
of other distribution classes was associated with
stronger species aggregation. As most populations
in natural forests are clustered (Wang et al., 2018;
Engone Obiang et al., 2019), the probability that the
nearest neighbor of a species, especially a rare spe-
cies, is a tree of the same species will be higher than
the community average of the occurrence of that spe-
cies (Condit et al., 2000; Nguyen et al., 2016), sup-
porting our results. However, in other distribution
patterns, the distribution of richness among struc-
tural types and its effect on tree species distribution
are unclear, given the small number of natural forests
with a regular or random distribution and the paucity
of studies of those forests (Li et al., 2022). Tree size
distribution is also related to structural types. Dif-
ferences in DBH may determine the spatial distribu-
tion of tree size, where smaller differences indicate
greater probability of a random distribution, and vice
versa. The tree sizes of HCT and HRT were random-
ly distributed, and the maximum and minimum di-
ameters of those trees were average. RaTs accounted
for approximately 50% of the trees of each diame-
ter size class in natural forests (Zhang & Hui, 2021;
Li et al., 2022), but the extremes in DBH included
many small trees that formed a clump. In natural
forests with distinct vertical stratifications, includ-
ing the study forest, the upper layer has an obvious
aggregation pattern of tree size that is significantly
different at DBH, whereas tree size in the the lower
layer is likely have a more random pattern (Ghaland-
arayeshi et al., 2017; Pommerening et al., 2020). The

relationship between tree size and distribution pat-
tern is mainly responsible for the particular resource
utilization strategy. Gap regenaeration and seed dis-
persal limitation result in sapling aggregation, with
their competition leading to size differentiation, high
mortality, and increasing neighbor distance.

Structural properties of mixture classes
in natural forests

Aggregation is a common characteristic of mix-
ture classes. Both the mixing pattern and the distri-
bution pattern affect neighbor interactions (Potvin
& Dutilleul, 2009), regulate tree growth processes,
and may increase tree mortality (Bastias et al., 2019).
Conversely, the death and regeneration of natural
forests simultaneously alter the distribution pattern
and mixing status, consistent with the absence of an
absolute relationship between distribution pattern
and mingling. In natural pure and mixed European
beech forests, proximate trees are randomly distrib-
uted (Petritan et al., 2012). Thus, the species com-
position and diversity of natural forests in different
climatic regions of China may differ; however, the
distribution eventually becomes random (Zhang et
al., 2018). Our results are strongly supported by pre-
vious findings that the degree of mixture in multispe-
cies forests is independent of the distribution pattern
(Xu et al., 2006; Li et al., 2020). However, using a
computer simulation, Wang et al. (2016) found that
a random distribution has no effect on the species
mixture, whereas it is reduced by aggregation and
increased by regular distribution. Nonetheless, if bi-
ological interactions are not considered, simulations
do not always provide realistic scenarios. In mixed
forests, the distribution pattern of a tree species is
always related to that of other tree species (Graz,
2004), with both a high level of mixture and aggre-
gative distribution common at the community level.

Individuals of the two low-mixing classes were
small and mutually attractive, suggesting conspecif-
ic aggregation that was likely caused by gravitational
seed and dispersal limitation (Ghalandarayeshi et al.,
2017; Wang et al., 2018; Engone Obiang et al., 2019).
However, habitat preference, habitat filtering, distur-
bance and reproductive behavior can also enhance
the aggregation of populations (Getzin et al., 2008;
Shen et al., 2013; Bastias et al., 2019). Particularly
in alpine regions, complex terrain plays a secondary
role in the distribution of habitat resources (Lv et
al., 2023), altering species distribution and interspe-
cific associations, and strengthening species—habi-
tat associations (Shen et al., 2013). As the mixture
grade increased, the spatial association of mixture
classes changed from attraction to randomness, and
then to repulsion, such that greater differences in the
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mixture grade were associated with more obvious re-
pulsion. These observations indicate that the species
composition of a community forms a mosaic of pure
forest and mixed forest in space, potentially leading
to a decrease in species aggregation with an increase
in scale that influences future community develop-
ment (Carrer et al., 2018). A mosaic distribution is a
typical attribute of aged forests (Spies, 1998; Getzin
et al., 2008), as it is directly related to species inter-
action and resource utilization (Shen et al., 2013),
but also reflects internal and external ecological pro-
cesses. Homospecific attraction and heterospecif-
ic repulsion reflect the simultaneous occurrence of
multiple ecological processes in the aged forest (Car-
rer et al., 2018). In species-rich tropical forests, high
species diversity leads to lower density, which in turn
leads to complex intra- and interspecific interactions
(Nguyen et al., 2016).

The quantitative distribution of individuals with-
in the mixture classes of the old-growth forest on
Dayao Mountain was similar to that in many other
natural forests (Li et al., 2020; Lv et al., 2023); that
is, only a small proportion of small trees were the
same species as their closest neighbors. The sizes
of these small trees were randomly distributed in
space, suggesting that the probability of conspecific
negative density dependence was either low or not
obvious, in contrast to the mechanism of species di-
versity maintenance in tropical and other subtrop-
ical natural forests (Paine et al.,, 2012; Comita et
al., 2014; Zhu et al., 2015). Due to multiple factors
(Birch et al., 2019), conspecific negative density de-
pendence may be weak in montane climax communi-
ties. Larger individuals have higher degrees of min-
gling, which is consistent with the conclusion that
diameter is linearly related to the mixing degree (Li
et al., 2020) and supports the mingling-size hypoth-
esis (Wang et al., 2018; Pommerening et al., 2020).
Most large interspecifics in the studied forest were
uncommon species that provided shelter for small
trees (Zhu et al., 2015), as proposed by the Janzen-
Connell hypothesis (Comita et al., 2014; Nguyen et
al., 2016). AWT implies heterospecific aggregation
within at least a structural unit, and its higher values
indicate that heterospecific aggregation is prevalent
in this community, accounting for the high degree of
mixture in the community at a very small scale. Bas-
tias et al. (2019) suggested that trees in communi-
ties with higher richness and functional diversity are
closer to each other, which supports our results and
is consistent with the status of Dayao Mountain as a
global biodiversity hotspot (Li et al., 2023). Despite
the importance of studying the mechanism of species
coexistence by combining heterospecific effects, this
approach is often neglected (Wang et al., 2018). In
our consideration of the effect of scale, intraspecif-
ic aggregation dominated the species distribution of

the community, indicating that species mixture is re-
lated to scale. Additionally, the increase in mingling
and enhanced aggregation of small trees were syn-
chronized, suggesting that heterospecific small trees
promote a high degree of mixing within the commu-
nity. Rare species are important components of spe-
cies diversity in aged forests (Li et al., 2023); they are
typically smaller and exhibit higher aggregation than
common species (Condit et al., 2000). In addition to
tree death, the emergence of rare species is an impor-
tant driver of mixture pattern changes.

Structural properties of differentiation
classes in natural forests

Among differentiation classes, both DoT and SDT
contained many small trees with smaller proportions
than in inferior classes (WT and AWT). This finding
suggests that some structural units in the plot were
dominated by small trees; however, more often, small
trees coexisted with large trees, as also observed by
Pommerening et al. (2020). The coexistence of small
and large trees may favor reduced competition and
the maintenance of community stability, as shown
by the random association of various differentiation
classes. Although differentiation classes in the study
area had a similar clumped distribution pattern, many
other studies have found that both the upper layer of
large trees and large trees in old stands tend to have a
regular or random distribution, whereas small trees,
understory trees, and young stands tend to have a
clustered distribution (Condit et al., 2000; Getzin et
al., 2006; Wehenkel et al., 2015; Wang et al., 2018;
Zhang et al., 2018), there are also counterexamples
(Lietal., 2008). Dominant trees at the structural type
and stand levels belong to different categories (Li et
al., 2022). The former contains many small trees that
enhance the aggregation intensity of the distribution
pattern, whereas the latter consists of large trees that
compose the community framework, completely oc-
cupy the canopy advantage, and drive community de-
velopment (Engone Obiang et al., 2019; Caron et al.,
2021). Thus, the relationship between size differen-
tiation and DBH at the stand level is well expresssed
by a negative exponential function rather than a lin-
ear model (Li et al., 2020), thereby explaining the
differences in their distribution patterns.

Recent studies have shown that the U of natu-
ral forests plays a role in ‘equalization’, resulting in
a similar number of trees in differentiation classes
(Zhang et al., 2019; Li et al., 2020; Lv et al., 2023),
consistent with our results. Size differentiation al-
ways occurs within a structural unit, with reference
tree ¢ having a similar probability of belonging to one
of these differentiation classes (Petritan et al., 2012).
This possibility is further supported by the similar
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tree size distribution of the differentiation classes in
the study forest. Hui et al. (2019) argued that this is
the most common situation in natural forests, which
suggests that the spatial distribution of tree size is
in a state of equilibrium rather than a neutral state.
Other studies have shown that stable differentiation
is an early event that occurs even in artificial forests
after their near-natural conversion (Li et al., 2020),
and seems to be only partially influenced by environ-
mental factors (Lv et al., 2023). Uniform differenti-
ation should be emphasized in forest management
to maintain community structural balance. Similar
species abundances and aggregation are common
characteristics of differentiation classes. The slight-
ly lower degree of species aggregation in DoT than
in the other differentiation classes suggests mul-
tispecies co-dominance in this community, which is
consistent with the characteristics of other natural
forests near the Tropic of Cancer (Li et al., 2008;
Nguyen et al., 2016; Li et al., 2023). Most research
has been focused on the distribution characteristics
of differentiation classes rather than their underlying
mechanism. A stable quantitative distribution of dif-
ferentiation classes may be more useful in competi-
tive analysis and selection systems (Hui et al., 2018).

Conclusion

The spatial structure of forests is highly complex
and can be analyzed from multiple perspectives. In
this study, we classified the old-growth forest in the
Dayaoshan Mountains of Guangxi, China, into 15
structural types based on nearest-neighbor relation-
ships, and analyzed their distribution patterns, spa-
tial associations, and mark character. These structur-
al types exhibit various patterns, all of which can be
well explained by prevailing ecological theories, thus
supporting the rationale of our classification system.
Each structural type plays a different role within the
community, enriching our understanding of natural
forest ecosystems, particularly the construction of
their spatial structures, and potentially providing in-
sights into ecological processes that are difficult to
observe directly. In studies aimed at forest biodiver-
sity conservation and monitoring, spatial structural
differences should be examined at the community
and structural type levels through systematic analy-
ses at different scales, especially the fine scale; how-
ever, this approach has been largely neglected. This
study also contributes to closing the knowledge gap
regarding the medium-scale spatial structure of sub-
tropical natural forests. Comparisons of forest struc-
tural types at the global or regional level and explo-
ration of the non-spatial structure of structural types
remain areas of future research.
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