INSTYTUT DENDROLOGII

POLSKIEJ AKADEMII NAUK

Tomasz Pawłowski

Tomasz Pawłowski

 

dr Tomasz Andrzej Pawłowski, Associate Professor

 

 

Laboratory of Proteomics

Institute of Dendrology, Polish Academy of Sciences

Parkowa 5, PL-62-035 Kornik, Poland
Tel.: +48-618170033
Fax: +48-618170166

Mail: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.

 

Research interests

  • Mechanism of seed dormancy and germination
  • Plant hormones
  • Plant proteomics
  • Seed ecology

 

Projects

Principal Investigator

  • Regulation of European beech dormancy and germination mechanisms in variable environments (2020-2023)
  • Functional analysis of proteins associated with the acquisition and release of deep physiological dormancy of seeds Summary (2011-2015)
  • Proteomics of dormancy and germination of selected tree species (2007-2011)
  • Protein markers of dormancy and germination of selected tree seeds (2003-2007)
  • Qualitative changes and dynamics of protein synthesis in Norway maple seeds during dormancy breaking (1997)

Co-investigator

  • The importance of exogenous siderophores in the functioning of plant root cells of Scots pine (2014-2017)
  • Analysis of selected physiological processes, and changes in the cauliflower mitochondrial proteome during drought stress (2012-2015)
  • Molecular and structural basis of dormant vegetative buds of Norway spruce (2011-2013)
  • Conservation strategy in the form of seed genetic resources of black poplar (Populus nigra L.), endangered species in Europe (2010-2012)
  • Alternative use of poplar - phytoremediation of soils contaminated with food industry waste (2009-2011)
  • Interactions between insects and trees forming gals of the genus Quercus (2009-2011)
  • Comparative studies of the metabolism of beech seeds during dormancy breaking in conditions of cold stratification (2008-2009)
  • Mitochondrial proteomics of cauliflower (Brassica oleracea var. Botrytis) under stress (2008-2010)
  • Symplastic isolation in dormant buds of Norway spruce (2007-2010)
  • Identification of proteins essential for the mechanisms of tolerance (2007-2009)
  • Proteomics of selected species of poplar under conditions of stress of Cd, Cu and Pb (2006-2009)
  • Physiological and genetics aspects of resistancy of Pinus sylvestris on Heterobasidion annosum attack (2002-2006)
  • Polyamines and proteins participation in the mechanism of dormancy breaking of beech seeds (1999-2002)

 

Academic and Research Career

  • Adam Mickiewicz University, Faculty of Biology, Poznań, Poland, habilitation in biology, 2011
  • Adam Mickiewicz University, Faculty of Biology, Poznań, Poland, PhD in biology, 2001
  • Nicolaus Copernicus University, Poland, Faculty of Biology and Earth Sciences, Toruń,, MSc in biology, molecular biology specialization, 1993

 

Research experience 

  • Poland, "B+R for Wielkopolska" workshop and training, supported by European Social Found, March - September 2012
  • Poland, Real Support, Roche, Poznań, Real-Time PCR Workshop, September 9, 2012
  • Poland, Applera Poland, Warszawa, Real Time qPCR Workshop, June 11-12, 2008
  • Poland, Medical University, Łódź, 2-D DIGE Workshop, September 19-20, 2006
  • Poland, Adam Mickiewicz University, Poznań, IV Poznań Summer School of Bioinformatics, training, July 10-15, 2006
  • Poland, Agriculture University, Poznań, assistant, 12 months, 2004-2005
  • France, Génétique et d'Amélioration Génétique des Fruits et Légumes - Institute National de la Recherche Agronomique (INRA), Avignon, postdoc, 12 months, 2003-2004
  • France, Institut Biologie Moléculaire des Plantes (IBMP-CNRS), Strasbourg, postdoc, 5 months, 2002
  • The Netherlands, Plant Research International, Wageningen, fellowship, 9 months, 1997-1998

 

Publications

  1. Pawłowski, T.A.; Bujarska-Borkowska, B.; Suszka, J.; Tylkowski, T.; Chmielarz, P.; Klupczyńska, E.A.; Staszak, A.M. 2020. Temperature regulation of primary and secondary seed dormancy in Rosa canina L.: findings from proteomic analysis. Int. J. Mol. Sci. 21: 7008. https://doi.org/10.3390/ijms21197008.
  2. Pawłowski T.A. 2020. Kiełkowanie nasion drzew – jak przystosować się do zmian klimatu? Las Polski 1: 16-17.
  3. Pawłowski T.A., Klupczyńska E.A., Staszak A.M., Suszka J. 2019. Proteomic analysis of black poplar (Populus nigra L.) seed storability. Annals of Forest Science. DOI: 10.1007/s13595-019-0887-y
  4. Staszak A.M., Pers-Kamczyc E., Klupczyńska E.A., Pawłowski T.A. 2019. Expression of abscisic and gibberellic acid signalling factors in Fagus sylvatica L. seeds during dormancy breaking and germination. Dendrobiology 81: 22-30. http://dx.doi.org/10.12657/denbio.081.003
  5. Mucha J., Napierała-Filipiak A., Gabała E., Pawłowski T.A., Zadworny M. 2019. Redistribution of iron and hydrogen peroxide inPinus sylvestris roots in response to trophically diverse fungi. European Journal of Plant Pathology 153:1275–1286. https://doi.org/10.1007/s10658-018-01641-7
  6. Staszak A.M., Rewers M., Sliwinska E, Klupczyńska E.A., Pawłowski T.A. 2019. DNA synthesis pattern, proteome, and ABA and GA signaling in developing seeds of Norway maple (Acer platanoides). Functional Plant Biology 46(2): 152-164. doi:10.1071/FP18074
  7. Rurek M., Czołpińska M., Pawłowski T.A., Krzesiński, W., Spiżewski, T. 2018. Cold and heat stress diversely alter both cauliflower respiration and distinct mitochondrial proteins including OXPHOS components and matrix enzymes. Int. J. Mol. Sci. 19: 877. doi:10.3390/ijms19030877
  8. Rurek, M.; Czołpińska, M.; Pawłowski, T.A.; Staszak, A.M.; Nowak, W.; Krzesiński, W.; Spiżewski, T. 2018. Mitochondrial biogenesis in diverse cauliflower cultivars under mild and severe drought. Impaired coordination of selected transcript and proteomic responses, and regulation of various multifunctional proteins. Int. J. Mol. Sci. 19, 1130. doi:10.3390/ijms19041130
  9. Guzicka M., Pawłowski T.A., Staszak A., Rożkowski R., Chmura D.J. 2017. Molecular and structural changes in vegetative buds of Norway spruce during dormancy in natural weather conditions. Tree Physiology https://doi.org/10.1093/treephys/tpx156
  10. Staszak A.M., Guzicka M., Pawłowski T.A. 2017. Signalling regulators of abscisic and gibberellic acid pathways are involved in dormancy breaking of Norway maple (Acer platanoides L.) seeds. Acta Physiol Plant 39 (11):251. DOI 10.1007/s11738-017-2544-0
  11. Pawłowski T.A., Staszak A.M., Karolewski P., Giertych M.J. 2017. Plant development reprogramming by cynipid gall wasp: proteomic analysis. Acta Physiol Plant 39:114. DOI 10.1007/s11738-017-2414-9
  12. Staszak, A.M.; Pawłowski, T.A. 2016.  Proteomika nasion – w poszukiwaniu markerów spoczynku i kiełkowania. [w:] „Różnorodność biologiczna – od komórki do ekosystemu. Rośliny i grzyby – badania środowiskowe i laboratoryjne” (wersja elektroniczna). Pod redakcją Andrzeja Bajguza i Iwony Ciereszko. Polskie Towarzystwo Botaniczne, Białystok. Pp: 73-85. ISBN 978-83-62069-72-9.
  13. Pawłowski T.A., Staszak A.M. 2016. Analysis of the embryo proteome of sycamore (Acer pseudoplatanus L.) seeds reveals a distinct class of proteins regulating dormancy release. Journal of Plant Physiology 195: 9-22. http://dx.doi.org/10.1016/j.jplph.2016.02.017
  14. Staszak A.M., Pawłowski T.A. 2014. Proteomic analysis of embryogenesis and the acquisition of seed dormancy in Norway maple (Acer platanoides L.). International Journal of Molecular Sciences 15: 10868-10891. PDF
  15. Pawłowski T.A., Staszak A.M. 2014. Putative markers of seed dormancy breaking and germination. In: Proceedings and results of the international workshop: Current technologies of forest seed treatment. J. V. Muller, C. Kozioł, M. Pałucka (Eds.). The Kostrzyca Forest Gene Bank, SAR Pomorze, Bydgoszcz, Poland. p. 93.
  16. Staszak A.M., Pawłowski T.A. 2012. Forest tree research in post genomic era. Introduction to systems biology of broadleaves. Dendrobiology 68: 113-123.
  17. Pawłowski T.A. 2010. Proteomic approach to analyze dormancy breaking of tree seeds. Plant Molecular Biology 73: 15-25. PDF
  18. Pawłowski T.A. 2009. Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. BMC Plant Biology 9: 48. PDF
  19. Selzer V., Pawłowski T., Evrard J.-L., Canaday J., Herzog E., and Schmit A.-C. 2008. Plant gamma-TuSC-like components: their role in microtubule nucleation. In: The Plant Cytoskeleton: A Key Tool for Agro-Biotechnology, Y. Blume, W. Baird, A. Yemetz, and D. Brevario (Eds.). Springer Verlag, pp. 11-20.
  20. Pawłowski T.A. 2007. Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: Influence of abscisic and gibberellic acids. Proteomics 7: 2246-2257. PDF
  21. Faurobert M., Mihr C., Bertin N., Pawłowski T., Negroni L., Sommerer N., and Causse M. 2007. Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiology 143: 1327-1346. PDF
  22. Pawłowski T., Rurek M., Janicka S., Raczynska K.D., and Augustyniak H. 2005. Preliminary analysis of the cauliflower mitochondrial proteome. Acta Physiologiae Plantarum 27: 275-281. PDF
  23. Mihr C., Faurobert M., Pawłowski T., Bouchet J.P, Sommerer N., Rossignol M.,  Negroni L., Causse M. 2005. Proteome analysis of organoleptic quality in tomato. Acta Horticulturae 682: 277-283.
  24. Pawłowski T., Faurobert M., Mihr C., Grandbastien M. A., Causse M. 2005. Proteomics of genetic diversity in relation to tomato fruit size. Acta Horticulturae 682: 285-290.
  25. Pawłowski T.A., Bergervoet J.H.W., Bino R.J., Groot S.P.C. 2004. Cell cycle activity and β-tubulin accumulation during dormancy breaking of Acer platanoides L. seeds. Biologia Plantarum 48: 211-218. PDF
  26. Seltzer V., Pawłowski, T., Campagne S., Canaday J., Erhardt M., Evrard J.-L., Herzog E., Schmit A.-C. 2003. Multiple microtubule nucleation sites in higher plants. Cell Biology International 27: 267-269. PDF
  27. Szczotka Z., Pawłowski T., Krawiarz K. 2003. Proteins and polyamines during dormancy breaking of European beech (Fagus sylvatica L.) seeds. Acta Physiologiae Plantarum 25: 423-435. PDF
  28. Pawłowski T., Kalinowski A. 2003. Qualitative and quantitative changes in proteins in Acer platanoides L. seeds during maturation. Acta Biologica Cracoviensis Series Botanica 45: 139-144.
  29. Pawłowski T., Szczotka Z. 2001. Qualitative changes in the proteins of cotyledons during cold and warm stratification of Acer platanoides seeds. Acta Societatis Botanicorum Poloniae 70: 17-23.
  30. Pawłowski T., Szczotka Z. 1997. Qualitative changes in protein content during cold and warm stratification of Norway maple (Acer platanoides L.) seeds. Seed Science Research 7: 385-390. ABSTRACT
  31. Pawłowski T., Szczotka Z., Krawiarz K. 1997. Qualitative changes and dynamics of protein synthesis during cold and warm stratification of Norway maple (Acer platanoides L.) seeds. Acta Societatis Botanicorum Poloniae 66: 333-341.
  32. Pawłowski T. 1996. Developmental anomaly of Pinus koraiensis cone. Rocznik Dendrologiczny 44: 155-157.
  33. Różycki H., Strzelczyk E., Pawłowski T., Prusinkiewicz Z. 1996. Effect of peat-derived preparation "Polhum" on mycelial growth of ectomycorrhizal fungi. Folia Forestalia Polonica 38: 29-41.

 

 

 


 

Functional analysis of proteins associated with the acquisition and release of deepphysiological dormancy of seeds

Summary

Project financed by the National Science Centre, Poland.

Research team: Tomasz A. Pawłowski, Aleksandra M. Staszak, Marzenna Guzicka, Emila Pers-Kamczyc, Monika Rewers, Elwira Śliwińska

 

Dormancy is an adaptive mechanism that allows seeds to survive adverse conditions (in our climate it is winter) and germinate at the most appropriate time. This process is controlled by many diverse factors: internal (activated during the maturation of seeds) and external (mainly temperature). Deep dormancy is a physiological characteristic of many temperate tree species such as beech (Fagus sylvatica) and Norway maple (Acer platanoides). Dormancy disappears after a few months storage of hydrated seed at 1-5°C (cold stratification) and ends with germination. Seeds of these two species differ in resistance to desiccation and long-term storage. Beech seeds due to low tolerance to desiccation and long-term storage are classified as "suborthodox", Norway maple seeds due to higher resistance to desiccation and long-term storage are classified as "orthodox". The mechanism of seed dormancy acquisition and release is still not fully understood. The scientific goal of this project was to investigate the mechanism of regulation of deep physiological dormancy and germination in tree seeds. More specifically, the project aimed at understanding the role of proteins–direct factors regulating this process.

Using the proteomic approach we determined the proteins, their functions and processes responsible for seed maturation–the phase when  seeds acquire dormancy. These proteins were involved in the processing of genetic information, metabolism, and cellular and antioxidative processes. It was found that abscisic acid regulates the expression of genes responsible for the dormancy acquisition through the ABI5 transcription factor. Protein RGL2 inhibits the expression of genes related to germination, and maintains seeds at dormancy.

It was indicated that cold temperature of stratification caused changes in the hormone signaling pathways of abscisic and gibberellic acids. The ABI5 and 14-3-3 proteins were responsible for abscisic acid signaling resulting in the maintenance of dormancy. Cold stratification abolished the action of abscisic acid and, as a result, the seeds germinated. The RGL2 protein was involved in inhibiting the action of gibberellic acid. Cold stratification abolished its negative impact, and seeds germinated. Analysis of gene expression of the aforementioned proteins at the mRNA level confirmed the obtained results. Stratification also affected the location of these proteins within the tissue, cell and organelle.

An increase in the cell cycle activity was observed during Norway maple seed development. The number of nuclei with 4C DNA (after the synthesis of DNA) increased during development. In the embryo axes the cell cycle activity was inhibited at 17 weeks after flowering, whereas in the cotyledons the activity was increasing. In fully mature embryos the content of 4C DNA was much higher in cotyledons than in embryo axes. 17 WAF was probably the transition point between morphogenesis and maturation – stage when seeds enter dormancy.

The obtained results were used to build the model of tree seeds dormancy acquisition and breaking. The model showed differences in the depth of dormancy between the two species, which resulted probably from differences in seed desiccation tolerance.

 

Fig. Embryogenesis of Acer platanoides L. from 10 through 14 weeks after flowering (WAF).

     

Zmień kontrast

Dostosuj czcionkę

eu logo

HR 01

W ramach dotacji Powiatu Poznańskiego na prace konserwatorskie, restauratorskie lub roboty budowlane przy zabytku, nasze Arboretum otrzymało środki na realizację projektu pt. Wyeksponowanie oryginalnych elementów zabytkowego ogrodu poprzez przebudowę odcinka alejek parkowych w Arboretum w Kórniku.

powiatpozn

Przedsięwzięcie pn.: "Doposażenie sal edukacyjnych Instytutu Dendrologii Polskiej Akademii Nauk w Kórniku w sprzęt i pomoce naukowe potrzebne do prowadzenia edukacji przyrodniczej i ekologicznej" dofinansowano ze środków Wojewódzkiego Funduszu Ochrony Środowiska i Gospodarki Wodnej w Poznaniu. 

 

Zakup sprzętu i oprogramowania, materiałów i pomocy dydaktycznych wykorzystywanych w działalności edukacyjnej Instytutu Dendrologii PAN oraz opracowanie i wydruk przewodników przyrodniczych dla dzieci.

WFOSüGW Nowe logo peéna nazwa KOLOR

OZwRCIN extended colour RGB

Repozytorium Cyfrowe ID PAN

facebook idpan button